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Preface

ASReml-R is a statistical package that fits linear mixed models using Residual Maximum Likelihood
(REML) in the R environment. This package uses the same computational kernel as its companion
package ASReml. The computational kernel has been under development since 1993 and arose out of
collaboration between Arthur Gilmour and Brian Cullis (NSW Department of Primary Industries)
and Robin Thompson and Sue Welham (Rothamsted Research) to research into the analysis of
mixed models and to develop appropriate software, building on their wide expertise in relevant areas
including the development of methods that are both statistically and computationally effcient, the
analysis of animal and plant breeding data, the analysis of spatial and longitudinal data and the
production of widely used statistical software. Arthur Gilmour wrote the ASReml package. VSN
International acquired the rights to the computational kernel and ASReml from these sponsoring
organizations and now directly supports Arthur Gilmour for further computational developments.
In parallel, David Butler and Brian Cullis (University of Wollongong) extended the computational
kernel of ASReml to produce ASReml-R to work in the R environment. Beverley Gogel has been
extensively involved in the documentation of both packages.

This reference manual documents the features of the methods for objects of class asreml. Outside
of the worked examples, it does not consider the statistical issues involved in fitting models. The
authors are contributing to the preparation of other documents that are focused on the statistical
issues rather than the computing issues.

The features of ASReml-R include

• A flexible syntax for specifying variance models for the random effects, and the scope this
offers the user. There is a potential cost for this complexity. Users should be aware of the
dangers of either overfitting or attempting to fit inappropriate variance models to small or
highly unbalanced data sets. We stress the importance of the use of data driven diagnostics
and encourage the user to read the examples chapter, in which we have attempted to not
only present the syntax of ASReml-R in the context of real analyses but also to indicate some
of the modelling approaches we have found useful.

• The REML routines use the Average Information (AI) algorithm, and sparse matrix methods
for fitting the mixed model. This enables ASReml-R to efficiently analyse large and complex
data sets.

This manual consists of seven chapters. Chapter 1 introduces ASReml-R , describes the conventions
used throughout the manual, and describes the various data sets used for illustration; Chapter 2
presents an general overview of basic theory; Chapter 3 presents an introduction to fitting models
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in ASReml-R followed by a more detailed description of fitting the linear mixed model - this chapter
includes a section (3.13) that describes the model specification for multivariate analyses; Chapter
4 is a key chapter that presents the syntax for specifying variance models for random effects
in the model; Chapter 5 describes special functions and methods for genetic analyses; Chapter 6
outlines the prediction of linear functions of fixed and random effects in the linear mixed model and
Chapter 7 presents a comprehensive and diverse set of worked examples. The ASReml-R Package
Reference is a pdf version of the ASReml help pages obtained in R by typing help(asreml) and is
available at http://asreml.org under Resources > ASReml docs and on the VSN International
website https://www.vsni.co.uk. The Version 3 Reference Manual included the package reference
as a chapter. For ease of updating information, the package reference is being kept as a separate
document for Version 4.

There are a number of new developments in Version 4. They include a more sensible and consistent
nomenclature, a more unified framework for model specification and output objects, and extended
functionality. This functionality includes:

– Computationally efficient fitting of random regression models when there are more variables than
observations, motivated by the use of SNP marker data to explain genotypes.

– Fitting linear relationships among variance structure parameters.

– Computing functions of variance components and their approximate standard errors.

– Calculating information criteria.

– Easier, more consistent and more useful specification of direct sum structures for residual models.
These occur when data observations are partitioned into sections to which separate variance
structures are applied. For example, separate spatial structures and residual error variances
would typically be specified for each site in a multi-environment trail (MET) analysis.

– Simpler, more consistent specification and fitting of known variance matrices, including relation-
ship matrices, and allowance for singular matrices.

– The own() variance model introduced to allow the specification of a user-defined variance struc-
ture.

– Extensions to generalized linear models including threshold models and bivariate models with
one variate having a normal distribution and the other variate distributed from an exponential
family distribution.

– Generating design matrices to allow the use of derived model terms and functions.

– Functions that generate factors that combine levels of a factor or use a subset of levels to allow
easier prediction of models.

These changes are summarized in a separate document Navigating from ASReml-R Version 3 to 4. A
list of terms in Version 3 with their replacement terms in Version 4 is presented in Chapter 2 of the
navigation document and is repeated in Appendix C. Chapters 3 and 4 of the navigation document
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summarize what’s changed and what’s new in the Version 4 and are repeated in Appendices D and
E.

The data sets and ASReml-R input files used in this manual are included in the software distribution.
They remain the property of the authors or of the original source, but may be freely distributed
provided the source is acknowledged. We have extensively tested the software but it is inevitable
that bugs will exist. These may be reported to the authors. The authors would also appreciate
being informed of errors and improvements to the manual and software.

Upgrades

ASReml-R is being continually upgraded to implement new developments in the application of linear
mixed models. The release version will be available to licensed users from http://www.vsni.co.uk.
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1 Introduction

1.1 What ASReml-R can do

ASReml-R is designed to fit the general linear mixed model to moderately large data sets with
complex variance models. ASReml-R has application in the analysis of

• (un)balanced longitudinal data

• repeated measures data (multivariate analysis of variance and spline type models)

• (un)balanced designed experiments

• multi-environment trials and meta analysis

• regular or irregular spatial data.

The computational engine of ASReml-R is the algorithm of Gilmour et al. (1995) adapted from
the standalone program ASReml (Gilmour et al.; 2002). The computational efficiency of ASReml-R
arises from using this Average Information REML algorithm (giving quadratic convergence) and
sparse matrix operations. However, because of overheads inherent in S language implementations,
some very large problems may need to use the standalone ASReml program to overcome memory
limitations.

The asreml() function returns an object of class asreml. Standard methods resid(), fitted(), coef(),
summary(), plot(), anova() and predict() work with this object, and other methods including vari-
oGram() and wald() also exist.

1.2 Getting started

1.2.1 Installation

Installation instructions are provided on the VSN International website https://www.vsni.co.uk.

1.2.2 Help and references

Documentation for the asreml() function, support functions and related methods are available in
Windows help format, and in HTML form on Linux platforms. Typically, help is available via the
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standard help mechanism; that is, help(asreml) or ?asreml displays the asreml documentation in
text or HTML form depending on implementation and help system state.

There is an ASReml forum that all users are encouraged to join; visit
http://www.vsni.co.uk/forum to register.

The statistical theory underlying the modelling illustrated in this manual is introduced in Chapter
2. An extended discussion, with special reference to the fitting of variance models to structures
at the residual (R) and non-residual (random, G) levels, will appear in detail in a forthcoming
publication.

1.2.3 Using this guide

Users may find the introductory sections of Chapter 3 useful before reading further. This gives
an introduction to analysis in ASReml-R using an example from the literature and covers some
common tasks from creating a data frame to setting initial values for variance components. An
introduction to the theory that underpins the methods in ASReml-R is covered in Chapter 2.

Variance modelling is a complex aspect of linear mixed modelling. Chapter 4 gives details of
variance modelling in ASReml-R. You should refer to this chapter if you wish to fit more complex
variance models. Chapter 5 describes the inclusion of known variance structures, such as those
from ancestral pedigree information, in the model fitting process.

Prediction from the fitted linear mixed model is discussed in Chapter 6.

Chapter 7 presents a wide range of additional worked examples.

A complete description of the components of an asreml object and the data sets used in this manual
are given in the ASReml-R Package Reference which is a pdf version of the ASReml help pages
obtained in R by typing help(asreml). This document is available at http://asreml.org under
Resources > ASReml docs and on the VSN International website https://www.vsni.co.uk. Once
ASReml-R is loaded, the data sets can be accessed using the data() function in R, for example:

> data(grass)

to access the grass data set.

1.3 Data sets used

1.3.1 Nebraska Intrastate Nursery (NIN) field experiment

The yield data from an advanced Nebraska Intrastate Nursery (NIN) breeding trial conducted at
Alliance in 1988/89 are taken from Stroup et al. (1994). Four replicates of 19 released cultivars,
35 experimental wheat lines and 2 additional triticale lines were laid out in a 22 row by 11 column
rectangular array of plots; the varieties were allocated to the plots using a randomised complete
block (RCB) design. In field trials, complete replicates are typically allocated to consecutive groups
of whole columns or rows. In this trial the replicates were not allocated to groups of whole columns,
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but rather, overlapped columns. Table 1.1 gives the allocation of varieties to plots in field plan
order with replicates 1 and 3 in italics and replicates 2 and 4 in bold.
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Table 1.1: Trial layout and allocation of varieties to plots in the NIN field trial

column

row 1 2 3 4 5 6 7 8 9 10 11

1 - NE83407 BUCKSKIN NE87612 VONA NE87512 NE87408 CODY BUCKSKIN NE87612 KS831374

2 - CENTURA NE86527 NE87613 NE87463 NE83407 NE83407 NE87612 NE83406 BUCKSKIN NE86482

3 - SCOUT66 NE86582 NE87615 NE86507 NE87403 NORKAN NE87457 NE87409 NE85556 NE85623

4 - COLT NE86606 NE87619 BUCKSKIN NE87457 REDLAND NE84557 NE87499 BRULE NE86527

5 - NE83498 NE86607 NE87627 ROUGHRIDER NE83406 KS831374 NE83T12 CENTURA NE86507 NE87451

6 - NE84557 ROUGHRIDER - NE86527 COLT COLT NE86507 NE83432 ROUGHRIDER NE87409

7 - NE83432 VONA CENTURA SCOUT66 NE87522 NE86527 TAM200 NE87512 VONA GAGE

8 - NE85556 SIOUXLAND NE85623 NE86509 NORKAN VONA NE87613 ROUGHRIDER NE83404 NE83407

9 - NE85623 GAGE CODY NE86606 NE87615 TAM107 ARAPAHOE NE83498 CODY NE87615

10 - CENTURAK78 NE83T12 NE86582 NE84557 NE85556 CENTURAK78 SCOUT66 - NE87463 ARAPAHOE

11 - NORKAN NE86T666 NE87408 KS831374 TAM200 NE87627 NE87403 NE86T666 NE86582 CHEYENNE

12 - KS831374 NE87403 NE87451 GAGE LANCOTA NE86T666 NE85623 NE87403 NE87499 REDLAND

13 - TAM200 NE87408 NE83432 NE87619 NE86503 NE87615 NE86509 NE87512 NORKAN NE83432

14 - NE86482 NE87409 CENTURAK78 NE87499 NE86482 NE86501 NE85556 NE87446 SCOUT66 NE87619

15 - HOMESTEAD NE87446 NE83T12 CHEYENNE BRULE NE87522 HOMESTEAD CENTURA NE87513 NE83498

16 LANCER LANCOTA NE87451 NE87409 NE86607 NE87612 CHEYENNE NE83404 NE86503 NE83T12 NE87613

17 BRULE NE86501 NE87457 NE87513 NE83498 NE87613 SIOUXLAND NE86503 NE87408 CENTURAK78 NE86501

18 REDLAND NE86503 NE87463 NE87627 NE83404 NE86T666 NE87451 NE86582 COLT NE87627 TAM200

19 CODY NE86507 NE87499 ARAPAHOE NE87446 - GAGE NE87619 LANCER NE86606 NE87522

20 ARAPAHOE NE86509 NE87512 LANCER SIOUXLAND NE86607 LANCER NE87463 NE83406 NE87457 NE84557

21 NE83404 TAM107 NE87513 TAM107 HOMESTEAD LANCOTA NE87446 NE86606 NE86607 NE86509 TAM107

22 NE83406 CHEYENNE NE87522 REDLAND NE86501 NE87513 NE86482 BRULE SIOUXLAND LANCOTA HOMESTEAD
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1.3.2 Repeated measures on rats

Growth curve data on the body weights of rats are taken from Box (1950). A total of 27 rats was
divided randomly into 3 groups of 10, 7 and 10, respectively. Group 1 were kept as a control, group
2 had thyroxin and group 3 had thiouracil added to their drinking water. Five weekly measurements
were taken on each individual and the raw results are shown in Figure 1.1.
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Figure 1.1: Weekly body weights of rats. C = Control, X = Thyroxin, T = Thiouracil

1.3.3 Orange wether trial

Three key traits for the Australian wool industry are the weight of wool grown per year, the
cleanness and the diameter of that wool. Much of the wool is produced from wethers and most
major producers have traditionally used a particular strain or bloodline. To assess the importance
of bloodline differences, many wether trials were conducted. One trial was conducted from 1984
to 1988 at Borenore near Orange. It involved 35 teams of wethers representing 27 bloodlines. The
following extract from the file orange.csv contains greasy fleece weight (kg), yield (percentage of
clean fleece weight to greasy fleece weight) and fibre diameter (microns).

Tag, Site, Bloodline, Team, Year, gfw, yield, fdiam

0101, 3, 21, 1, 1, 5.6, 74.3, 18.5

0101, 3, 21, 1, 2, 6.0, 71.2, 19.6

0101, 3, 21, 1, 3, 8.0, 75.7, 21.5

0102, 3, 21, 1, 1, 5.3, 70.9, 20.8

0102, 3, 21, 1, 2, 5.7, 66.1, 20.9

0102, 3, 21, 1, 3, 6.8, 70.3, 22.1

0103, 3, 21, 1, 1, 5.0, 80.7, 18.9

0103, 3, 21, 1, 2, 5.5, 75.5, 19.9

0103, 3, 21, 1, 3, 7.0, 76.6, 21.9
...

4013, 3, 43, 35, 1, 7.9, 75.9, 22.6
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4013, 3, 43, 35, 2, 7.8, 70.3, 23.9

4013, 3, 43, 35, 3, 9.0, 76.2, 25.4

4014, 3, 43, 35, 1, 8.3, 66.5, 22.2

4014, 3, 43, 35, 2, 7.8, 63.9, 23.3

4014, 3, 43, 35, 3, 9.9, 69.8, 25.5

4015, 3, 43, 35, 1, 6.9, 75.1, 20.0

4015, 3, 43, 35, 2, 7.6, 71.2, 20.3

4015, 3, 43, 35, 3, 8.5, 78.1, 21.7

1.3.4 Beef cattle data

These data appear among the examples in Harvey (1977) and are originally from Harvey (1960).
The data comprise 65 observations on individual calves indexed by factors Line and Sire within
line. The data as used here contain a covariate ageOfDam and 3 response variates average daily
gain, age and initial weight labelled as y1, y2 and y3, respectively.

An extract from harvey.dat is given below:

Calf Sire Dam Line ageOfDam y1 y2 y3

101 Sire 1 0 1 3 192 390 224

102 Sire 1 0 1 3 154 403 265

103 Sire 1 0 1 4 185 432 241

104 Sire 1 0 1 4 183 457 225

105 Sire 1 0 1 5 186 483 258

106 Sire 1 0 1 5 177 469 267

107 Sire 1 0 1 5 177 428 271

108 Sire 1 0 1 5 163 439 247

109 Sire 2 0 1 4 188 439 229

110 Sire 2 0 1 4 178 407 226
...

161 Sire 9 0 3 4 184 483 244

162 Sire 9 0 3 5 180 425 266

163 Sire 9 0 3 5 177 420 246

164 Sire 9 0 3 5 175 449 252

165 Sire 9 0 3 5 164 405 242

In a genetic analysis we can specify the relationship among individuals in a pedigree file. This is
a simple text file with columns for the individual’s identity and its male and female parents. The
first 20 lines of the pedigree file harvey.ped associated with these data are:

Calf Sire Dam

101 Sire 1 0

102 Sire 1 0

103 Sire 1 0

104 Sire 1 0

105 Sire 1 0

6



1.3 Data sets used

106 Sire 1 0

107 Sire 1 0

108 Sire 1 0

109 Sire 2 0

110 Sire 2 0

111 Sire 2 0

112 Sire 2 0

113 Sire 2 0

114 Sire 2 0

115 Sire 2 0

116 Sire 2 0

117 Sire 3 0

118 Sire 3 0

119 Sire 3 0

120 Sire 3 0

where unknown parents are denoted here by 0. In this example the columns of the pedigree file
harvey.ped are fully contained within the data file harvey.dat.
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2 Some theory

2.1 The general linear mixed model

If y (n× 1) denotes the vector of observations, the general linear mixed model can be written as

y = Xτ +Zu+ e (2.1)

where τ (p× 1) is a vector of fixed effects, X (n× p) is the design matrix of full column rank that
associates observations with the appropriate combination of fixed effects, u (q × 1) is a vector of
random effects, Z (n × q) is the design matrix that associates observations with the appropriate
combination of random effects, and e (n× 1) is the vector of residual errors.

2.1.1 Sigma parameterization of the linear mixed model

Model (2.1) is called a linear mixed model or linear mixed effects model. It is assumed[
u
e

]
∼ N

([
0
0

]
,

[
G(σg) 0

0 Rv(σr)

])
(2.2)

where the matrices G and Rv are variance matrices for u and e and are functions of parameters
σg and σr. This requires that the random effects u and residual errors e are uncorrelated. The
variance matrix for y is then of the form

var (y) = ZG(σg)Z
ᵀ

+Rv(σr) (2.3)

which we will refer to as the sigma parameterization of the G and R variance structures, and the
individual variance structure parameters in σg and σr will be referred to as sigmas. The variance
models given by G and Rv are referred to as G structures and R structures respectively.

We illustrate these concepts using the simplest linear mixed model, that is, the one-way classifica-
tion.

Example 2.1 A simple example Consider a one-way classification comprising a single random effect
u, and a residual error term e. The two random components of this model, namely u and e, are each
assumed to be independent and identically distributed (IID) and to follow a normal distribution
such that u ∼ N(0, σ2uIq) and e ∼ N(0, σ2eIn). Hence the variance of y has the form

var (y) = σ2uZZ
ᵀ

+ σ2eIn (2.4)
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This model has two variance structure parameters or sigmas: the variance component σ2u associated
with u, and the variance component σ2e associated with e. Mapping this equation back to (2.3),
we have σg = σ2u, G(σg) = σ2uIq, σr = σ2e and Rv(σr) = σ2eIn.

2.1.2 Partitioning the fixed and random model terms

Typically, τ and u are composed of several model terms, that is, τ can be partitioned as τ =
[τ ᵀ

1
. . . τ ᵀ

t
]ᵀ and u can be partitioned as u = [uᵀ

1
. . .uᵀ

b
]ᵀ, with X and Z partitioned conformably

as X = [X1 . . .Xt] and Z = [Z1 . . .Zb].

2.1.3 G structure for the random model terms

For u partitioned as u = [uᵀ
1
. . .uᵀ

b
]ᵀ, we impose a direct sum structure on the matrix G, written

G = ⊕b′i=1Gi =


G1 0 . . . 0 0
0 G2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Gb′−1 0
0 0 . . . 0 Gb′


where ⊕ is the direct sum operator, each Gi is of size qi and q =

∑
i qi.

The default assumption is that each random model term generates one component of this direct
sum (then b′ = b and var (ui) = Gi for i = 1 . . . b). This means that the random effects from any
two distinct model terms are uncorrelated. However, in some models, one component of G may
apply across several model terms, for example, in random coefficient regression where the random
intercepts and slopes for subjects are correlated. To accommodate these cases, one component of
G may apply across several model terms (then b′ < b).

Example 2.2 Variance components mixed models

Building example 2.1 to a linear mixed model with more than one (b > 1) random effect (typically
known as a variance components mixed model), the random effects ui in u, and the residual errors
e, are assumed pairwise uncorrelated and to each be normally distributed with mean zero and
variance given by

var (ui) = σ2uiIqi

and

var (e) = σ2eIn

where Iqi and In are identity matrices of dimension qi and n, respectively. In this case

var (y) =
b∑
i=1

σ2uiZiZ
ᵀ
i + σ2eIn. (2.5)

2.1.4 Partitioning the residual error term

As for the fixed and random model terms, it is often useful or appropriate to consider a partitioning
of the vector of residual errors e according to some conditioning factor. We use the term section
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to describe this partitioning and the most common example of the use of sections in e is when we
wish to allow sections in the data to have different variance structures. For example, in the analysis
of multi-environment trials (METs) it is natural to expect that each trial will require a separate
(possibly spatial) error structure. In this case, for s sections we have e = [eᵀ

1
, eᵀ

2
, . . . , eᵀ

s
]ᵀ assuming

that the data vector is ordered by section, and where ej represents the vector of errors for the jth

section.

2.1.5 R structure for the residual error term

For e partitioned as e = [eᵀ1, e
ᵀ
2, . . . , e

ᵀ
s ]
ᵀ we allow the matrix Rv to have a similar direct sum

structure, with

Rv = ⊕sj=1Rvj =


Rv1 0 . . . 0 0

0 Rv2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Rvs−1 0
0 0 . . . 0 Rvs


for s ≥ 1 sections and the data ordered by section. Note that it may be necessary to re-order (re-
number) the data units in order to achieve this structure. In ASReml-R it is now straightforward
to apply possibly different variance structures to each component of Rv.

In many cases, the residual errors (e) can be expected to share a common variance structure. In
this case there is only one section (s = 1).

Typically a variance structure is specified for each random model term and often more complex
models than the simple IID model are specified. ASReml-R offers a wide range of variance models
to choose from. A full listing is in Table B.1 and details are provided in Chapter 4.

2.1.6 Gamma parameterization for the linear mixed model

The sigma parameterization of model (2.3) is one possible parameterization of var (y) . In this
parameterization both G(σg) and Rv(σr) are variance matrices and the variance structure param-
eters in σg and σr are referred to as sigmas, see above. Other parameterizations are possible and
are sometimes useful. For example, in some of the early development of REML for the traditional
mixed model of (2.5), the variance matrix was parameterized as the equivalent model

var (y) = σ2e

(
b∑
i

γgiZiZ
ᵀ
i + In

)
(2.6)

for γgi being the ratio of the variance component for the random term ui relative to error variance,
that is, γgi = σ2ui/σ

2
e . In this case ASReml-R calculated a simple estimate of σ2e and initial values for

the iterative process were specified in terms of the ratios γgi rather than in terms of the variance
components σ2ui . It was often easier to specify initial values in terms of these ratios rather than the
variance components which is why this approach was adopted. Where Rv(σr) can be written as a
scaled correlation matrix, that is, Rv(σr) = σ2eRc(γr), this suggests the alternative specification
of (2.2) [

u
e

]
∼ N

([
0
0

]
, σ2e

[
G(γg) 0

0 Rc(γr)

])
(2.7)

10



2.1 The general linear mixed model

where γg and γr represent the variance structure parameters associated with scaled (by σ2e) variance
matrices. In this case

var (y) = σ2e
(
ZG(γg)Z

ᵀ
+Rc(γr)

)
, (2.8)

which we will refer to as the gamma parameterization, and the individual variance structure pa-
rameters in γg and γr will be referred to as gammas. ASReml-R switches between the sigma and
gamma parameterizations for estimation. This is discussed in Section 4.8.

2.1.7 Parameter types

Each sigma in σg and σr and each gamma in γg and γr has a parameter type, for example, variance
components, variance component ratios, autocorrelation parameters, factor loadings. Furthermore,
the parameters in σg, σr, γg and γr can span multiple types. For example, the spatial analysis
of a simple column trial would involve variance components (sigma parameterization) or variance
component ratios (gamma parameterization) and spatial autocorrelation parameters.

2.1.8 Variance structures for the random model terms

The random model terms ui in u define the random effects and associated design matrices, Zi ∈ Z,
but additional information is required before the model can be fitted. This extra step involves
defining the G structure for each term. In Release 4, this is achieved by using functions to directly
apply variance models to the individual component factors in a random model term to define Gi.
This produces a consolidated model term that simultaneously defines both the design matrix (Zi)
and variance model (Gi). This process is described in detail in Chapter 4 with examples.

2.1.9 Variance models for terms with several factors

A random model term may comprise either a single factor or several component factors to give a
compound model term. Consider a compound model term represented by A:B, where the component
factors A and B have a and b levels, respectively. The vector uAB for A:B is generated with the
levels of B nested in the levels of A, that is, the levels of B cycling fastest:

uAB = (u11 , u12 , . . . u1b
, u21 , u22 , . . . u2b

, . . . , ua1 , ua2 , . . . uab)
ᵀ
.

To illustrate the variance structure clearly, let uiB be the vector with b elements containing effects
for the ith level of A and u

Ak
be the vector with a elements containing effects for the kth level of B.

Now consider the variance model for the term A:B. Let ΣA = [aij ] be an a× a symmetric variance
matrix and let ΣB = [bij ] be a b×b symmetric variance matrix. The assumption of separability (for

example, Gelfand et al. (2010)) suggests modelling the variances using cov
(
uiB ,u

ᵀ
jB

)
as aijΣB .

This model is called separable as we have factorized the covariances into terms dependent on factor
A (aij) and on factor B (ΣB ). We find

ΣuAB = var (uAB ) = ΣA ⊗ΣB ,

see Section 2.1.10 for the mathematical definition of a direct product structure, and

cov (uik, ujl) = aij × bkl.
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The latter is easily obtained by constructing cov
(
uiB ,u

ᵀ
jB

)
= aijΣB and then extracting the

(k, l)th term aijbkl. Two simple examples are:

• ΣuAB = IA ⊗ΣB where ΣB has an unstructured form. This means that the elements of uiB are
IID N (0, ΣB ). This model is widely used in the analysis of multivariate data.

• ΣuAB = ΣA ⊗ IB where ΣA represents a first order autoregressive process. This means that the
elements of u

Ak
are IID realisations of this process. This model is used widely in the analysis of

field trial data to model spatial trend in one direction only.

Example 2.3 A simple separable structure

If A has 3 levels and B has 2 levels, then the vector uAB for the term A:B would be

uAB = (u11 , u12 , u21 , u22 , u31 , u32)
ᵀ
.

Let ΣuAB = ΣA ⊗ΣB where ΣA =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 and ΣB =

[
b11 b12
b21 b22

]
.

If uA1 the set of effects in uAB for level 1 of B and uA2 is the set of effects in uAB for level 2 of
B, then cov

(
uA1 ,u

ᵀ
A1

)
= var (uA1) = b11ΣA and cov

(
uA1 ,u

ᵀ
A2

)
= b12ΣA . Similarly for u1B , u2B

and u3B being the combined vectors of effects for each level of A. As examples, cov
(
u1B ,u

ᵀ
1B

)
=

var (u1B ) = a11ΣB and cov
(
u2B ,u

ᵀ
3B

)
= a23ΣB . Finally, using magenta and blue to highlight terms

associated with A and B, respectively,

cov (u21 , u32) = a23 × b12.

2.1.10 Direct product structures

For the matrix A =

 a11 . . . a1p

...
. . .

...
am1 . . . amp

 and a second matrix B, the direct product structure of A

and B is written in full as

A⊗B =


a11B . . . a1pB

...
. . .

...

am1B . . . ampB

 .

As explained in the previous section, structures associated with direct product construction are
known as separable variance structures and we call the assumption that a separable variance struc-
ture is plausible the assumption of separability.

2.1.11 Direct products in R structures

Separable structures occur naturally in many practical situations. Consider a vector of common
errors associated with an experiment. The usual least squares assumption (and the default in
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2.1 The general linear mixed model

ASReml-R) is that these are independently and identically distributed (IID). However, if e was from
a field experiment laid out in a rectangular array of r rows by c columns, we could arrange the
residuals as a matrix and might consider that they were autocorrelated within rows and columns.
Writing the residuals as a vector in field order, that is, by sorting the residuals rows within columns
(plots within blocks) the variance of the residuals might then be

σ2e Σc(ρc)⊗Σr(ρr)

where Σc(ρc) and Σr(ρr) are correlation matrices for the row model (order r, autocorrelation param-
eter ρr) and column model (order c, autocorrelation parameter ρc) respectively. More specifically, a
two-dimensional separable autoregressive spatial structure (AR1 ⊗ AR1) is sometimes assumed for
the common errors in a field trial analysis (see Gogel (1997) and Cullis et al. (1998) for examples).
In this case

Σr =


1

ρr 1

ρ2r ρr 1
...

...
...

. . .

ρr−1r ρr−2r ρr−3r . . . 1

 and Σc =


1

ρc 1

ρ2c ρc 1
...

...
...

. . .

ρc−1c ρc−2c ρc−3c . . . 1

 .

Alternatively, the residuals might relate to a multivariate analysis with nt traits and n units and
be ordered traits within units. In this case an appropriate variance structure might be

In ⊗Σ

where Σ (nt×nt) is a general or unstructured variance matrix. See Chapter 4 for details on specifying
separable R structures in ASReml-R.

2.1.12 Direct products in G structures

Likewise, the random model terms in u may have a direct product variance structure. For example,
for a field trial with s sites, g varieties and the effects ordered varieties within sites, the random
model term site.variety may have the variance structure

Σ⊗ Ig

where Σ is the variance matrix for sites. This would imply that the varieties are independent
random effects within each site, have different variances at each site, and are correlated across
sites. Important Whenever a random term is formed as the interaction of two factors you should
consider whether the IID assumption is sufficient or if a direct product structure might be more
appropriate. See Chapter 4 for details on specifying separable G structures in ASReml-R.

2.1.13 Range of variance models for R and G structures

A range of models are available for the components of both R and G structures. They include
correlation (C) models (that is, where the diagonals are 1), or covariance (V ) models and are
discussed in detail in Chapter 4. Among the range of correlation models are:

• identity (that is, independent and identically distributed with variance 1)

13



2.2 Estimation

• autoregressive (order 1 or 2)

• moving average (order 1 or 2)

• ARMA(1,1)

• uniform

• banded

• general correlation.

Among the range of covariance models are:

• scaled identity (that is, independent and identically distributed with homogeneous variances)

• diagonal (that is, independent with heterogeneous variances)

• antedependence

• unstructured

• factor analytic

• reduced rank.

There is also the facility to define models based on relationship matrices, including additive rela-
tionship matrices generated by pedigrees and using user specified variance matrices.

2.1.14 Combining variance models in R and G structures

The combination of variance models in separable G and R structures is a difficult and important
concept. This is discussed in detail in Chapter 4.

2.2 Estimation

Consider the sigma parameterization of Section 2.1.1. Estimation involves two processes that are
closely linked. They are performed within the ‘engine’ of ASReml-R. One process involves estimation
of τ and prediction of u (although the latter may not always be of interest) for given σg and σr.
The other process involves estimation of these variance parameters.

2.2.1 Estimation of the variance parameters

Estimation of the variance parameters is carried out using residual or restricted maximum likelihood
(REML), developed by Patterson and Thompson (1971). An historical development of the theory
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2.2 Estimation

can be found in Searle et al. (1992). Note firstly that

y ∼ N(Xτ , H), (2.9)

where H = ZG(σg)Z
ᵀ

+Rv(σr). REML does not use (2.9) for estimation of variance parameters,
but rather uses a distribution free of τ , essentially based on error contrasts or residuals. The
derivation given below is presented in Verbyla (1990).

We transform y using a non-singular matrix L = [L1 L2] such that

L
ᵀ
1X = Ip, L

ᵀ
2X = 0.

If yj = L
ᵀ
jy, j = 1, 2, [

y1
y2

]
∼ N

([
τ
0

]
,

[
L

ᵀ
1HL1 L

ᵀ
1HL2

L
ᵀ
2HL1 L

ᵀ
2HL2

])
.

The full distribution of L
ᵀ
y can be partitioned into a conditional distribution, namely y1|y2, for

estimation of τ , and a marginal distribution based on y2 for estimation of σg and σr; the latter is
the basis of the residual likelihood.

The estimate of τ is found by equating y1 to its conditional expectation, and after some algebra
we find,

τ̂ = (X
ᵀ
H−1X)−1X

ᵀ
H−1y

Estimation of κ = [σᵀ
g σ

ᵀ
r ]
ᵀ is based on the log residual likelihood,

`R = −1

2
(log detL

ᵀ
2H
−1L2 + y

ᵀ
2(L

ᵀ
2HL2)

−1y2)

= −1

2
(log detX

ᵀ
H−1X + log detH + y

ᵀ
Py) (2.10)

where
P = H−1 −H−1X(X

ᵀ
H−1X)−1X

ᵀ
H−1.

Note that yᵀPy = (y −Xτ̂ )ᵀH−1(y −Xτ̂ ). The log-likelihood (2.10) depends on X and not on
the particular non-unique transformation defined by L.

The log residual likelihood (ignoring constants) can be written as

`R = −1

2
(log detC + log detRv + log detG+ y

ᵀ
Py). (2.11)

We can also write

P = R−1v −R−1v WC−1W
ᵀ
R−1v

with W = [X Z] . Letting κ = [σᵀ
g σ

ᵀ
r ]
ᵀ, the REML estimates of κi are found by calculating the

score

U(κi) = ∂`R/∂κi = −1

2
[tr (PH i)− yᵀPH iPy] (2.12)

and equating to zero. Note that H i = ∂H/∂κi.
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2.2 Estimation

The elements of the observed information matrix are

− ∂2`R
∂κi∂κj

=
1

2
tr (PH ij)−

1

2
tr (PH iPHj)

+ y
ᵀ
PH iPHjPy −

1

2
y
ᵀ
PH ijPy (2.13)

where H ij = ∂2H/∂κi∂κj .

The elements of the expected information matrix are

E

(
− ∂2`R
∂κi∂κj

)
=

1

2
tr (PH iPHj) . (2.14)

Given an initial estimate κ(0), an update of κ, κ(1) using the Fisher-scoring (FS) algorithm is

κ(1) = κ(0) + I(κ(0),κ(0))−1U(κ(0)) (2.15)

where U(κ(0)) is the score vector (2.12) and I(κ(0), κ(0)) is the expected information matrix (2.14)
of κ evaluated at κ(0).

For large models or large data sets, the evaluation of the trace terms in either (2.13) or (2.14) is
either not feasible or is very computer intensive. To overcome this problem ASReml-R uses the
AI algorithm (Gilmour, Thompson and Cullis, 1995). The matrix denoted by IA is obtained by
averaging (2.13) and (2.14) and approximating yᵀPH ijPy by its expectation, tr (PH ij) in those
cases when H ij 6= 0. For variance components models (that is those linear with respect to variances
in H), the terms in IA are exact averages of those in (2.13) and (2.14). The basic idea is to use
IA(κi, κj) in place of the expected information matrix in (2.15) to update κ.

The elements of IA are

IA(κi, κj) =
1

2
y
ᵀ
PH iPHjPy. (2.16)

The IA matrix is the (scaled) residual sums of squares and products matrix of

y = [y1, . . . ,yk]

where yi is the ‘working’ variate for κi and is given by

yi = H iPy

= H iR
−1
v ẽ

= RviR
−1
v ẽ, κi ∈ σr

= ZGiG
−1ũ, κi ∈ σg

where ẽ = y −Xτ̂ −Zũ, τ̂ and ũ are solutions to (2.17). In this form the AI matrix is relatively
straightforward to calculate.

The combination of the AI algorithm with sparse matrix methods, in which only non-zero values
are stored, gives an efficient algorithm in terms of both computing time and workspace.
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2.3 What are BLUPs?

2.2.2 Estimation/prediction of the fixed and random effects

To estimate τ and predict u the objective function

log fY (y | u ; τ ,Rv) + log fU (u ; G)

is used. This is the log-joint distribution of (Y ,u).

Differentiating with respect to τ and u leads to the mixed model equations (Henderson et al., 1959,
Robinson, 1991) which are given by[

X
ᵀ
R−1v X X

ᵀ
R−1v Z

Z
ᵀ
R−1v X Z

ᵀ
R−1v Z +G−1

] [
τ̂
ũ

]
=

[
X

ᵀ
R−1v y

Z
ᵀ
R−1v y

]
. (2.17)

These can be written as
Cβ̃ = W

ᵀ
R−1v y

where C = W
ᵀ
R−1v W +G∗, β̃ =

[
τ̂
ᵀ
ũ
ᵀ]ᵀ

and

G∗ =

[
0 0
0 G−1

]
.

The solution of (2.17) requires values for σg and σr. In practice we replace σg and σr by their
REML estimates σ̂g and σ̂r.

Note that τ̂ is the empirical best linear unbiased estimator (E-BLUE) of τ , while ũ is the empirical
best linear unbiased predictor (E-BLUP) of u for known σg and σr. We also note that

β̃ − β =

[
τ̂ − τ
ũ− u

]
∼ N

([
0
0

]
, C−1

)
.

2.2.3 Use of the gamma parameterization

ASReml-R uses either the gamma or sigma parameterization for estimation depending on the resid-
ual specification. The current default for univariate, single section data-sets is the gamma param-
eterization. In this case, all scale parameters are estimated as a ratio with respect to the residual
variance, σ2e , and any parameters that measure only correlation are unchanged. See Chapter 4 for
more detail.

2.3 What are BLUPs?

Consider a balanced one-way classification. For data records ordered r repeats within b treatments
regarded as random effects, the linear mixed model is y = Xτ + Zu + e where X = 1b ⊗ 1r is
the design matrix for τ (the overall mean), Z = Ib ⊗ 1r is the design matrix for the b (random)
treatment effects ui and e is the error vector. Assuming that the treatment effects are random
implies that u ∼ N(Aψ, σ2bIb), for some design matrix A and parameter vector ψ. It can be
shown that

ũ =
rσ2b

rσ2b + σ2
(ȳ − 1ȳ··) +

σ2

rσ2b + σ2
Aψ (2.18)

where ȳ is the vector of treatment means, ȳ·· is the grand mean. The differences of the treatment
means and the grand mean are the estimates of treatment effects if treatment effects are fixed. The
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2.4 Inference: Random effects

BLUP is therefore a weighted mean of the data based estimate and the ‘prior’ mean Aψ. If ψ = 0,
the BLUP in (2.18) becomes

ũ =
rσ2b

rσ2b + σ2
(ȳ − 1ȳ··) (2.19)

and the BLUP is a so-called shrinkage estimate. As rσ2b becomes large relative to σ2, the BLUP
tends to the fixed effect solution, while for small rσ2b relative to σ2 the BLUP tends towards zero, the
assumed initial mean. Thus (2.19) represents a weighted mean which involves the prior assumption
that the ui have zero mean.

Note also that the BLUPs in this simple case are constrained to sum to zero. This is essentially
because the unit vector defining X can be found by summing the columns of the Z matrix. This
linear dependence of the matrices translates to dependence of the BLUPs and hence constraints.
This aspect occurs whenever the column space of X is contained in the column space of Z. The
dependence is slightly more complex with correlated random effects.

2.4 Inference: Random effects

2.4.1 Tests of hypotheses: variance parameters

Inference concerning variance parameters of a linear mixed effects model usually relies on approxi-
mate distributions for the (RE)ML estimates derived from asymptotic results.

It can be shown that the approximate variance matrix for the REML estimates is given by the
inverse of the expected information matrix (Cox and Hinkley, 1974, section 4.8). Since this matrix
is not available in ASReml-R we replace the expected information matrix by the AI matrix. Fur-
thermore the REML estimates are consistent and asymptotically normal, though in small samples
this approximation appears to be unreliable (see later).

A general method for comparing the fit of nested models fitted by REML is the REML likelihood
ratio test, or REMLRT. The REMLRT is only valid if the fixed effects are the same for both models.
In ASReml-R this requires not only the same fixed effects model, but also the same parameterisation.

If `R2 is the REML log-likelihood of the more general model and `R1 is the REML log-likelihood of
the restricted model (that is, the REML log-likelihood under the null hypothesis), then the REMLRT
is given by

D = 2 log(`R2/`R1) = 2 [log(`R2)− log(`R1)] (2.20)

which is strictly positive. If ri is the number of parameters estimated in model i, then the asymptotic
distribution of the REMLRT, under the restricted model is χ2

r2−r1 .

The REMLRT is implicitly two-sided, and must be adjusted when the test involves an hypothesis
with the parameter on the boundary of the parameter space. It can be shown that for a single
variance component, the theoretical asymptotic distribution of the REMLRT is a mixture of χ2

variates, where the mixing probabilities are 0.5, one with 0 degrees of freedom (spike at 0) and
the other with 1 degree of freedom. The approximate P-value for the REMLRT statistic (D), is
0.5(1-Pr(χ2

1 ≤ d)) where d is the observed value of D. This has a 5% critical value of 2.71 in
contrast to the 3.84 critical value for a χ2 variate with 1 degree of freedom. The distribution of the
REMLRT for the test that k variance components are zero, or tests involved in random regressions,
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2.4 Inference: Random effects

which involve both variance and covariance components, involves a mixture of χ2 variates from 0
to k degrees of freedom. See Self and Liang (1987) for details.

Tests concerning variance components in generally balanced designs, such as the balanced one-way
classification, can be derived from the usual analysis of variance. It can be shown that the REMLRT
for a variance component being zero is a monotone function of the F statistic for the associated
term.

To compare two (or more) non-nested models we can evaluate the Akaike Information Criteria
(AIC) or the Bayesian Information Criteria (BIC) for each model. These are given by

AIC = −2`Ri + 2ti

BIC = −2`Ri + ti log ν (2.21)

where ti is the number of variance parameters in model i and ν = n − p is the residual degrees
of freedom. AIC and BIC are calculated for each model and the model with the smallest value is
chosen as the preferred model.

2.4.2 Diagnostics

In this section we will briefly review some of the diagnostics that have been implemented in ASReml-
R for examining the adequacy of the assumed variance matrix for either R or G structures, or for
examining the distributional assumptions regarding e or u. Firstly we note that the E-BLUP of
the residual vector is given by

ẽ = y −Wβ̃

= RvPy (2.22)

It follows that

E (ẽ) = 0

var (ẽ) = Rv −WC−1W
ᵀ

The matrix WC−1W
ᵀ

(under the sigma parameterization) is the so-called ‘extended hat’ matrix.
ASReml-R includes the σ2 in the hat matrix under the gamma parameterization. It is the lin-
ear mixed effects model analogue of σ2X(X

ᵀ
X)−1X

ᵀ
for ordinary linear models. The diagonal

elements are returned in the hat component of the asreml object.

If aom = T in the call to asreml() (aom=T can also be set in asreml.options()), ASReml-R returns

• G−1ũ and G−1ũ/diag
√
G−1 −G−1CZZG−1 as a two column matrix

• R−1v ẽ and R−1v ẽ/diag
√
R−1v −R−1v WC−1W

ᵀ
R−1v as a two column matrix.

Note aom = T has not been validated for multivariate models or XFA models with zero specific
variances.

The variogram has been suggested as a useful diagnostic for assisting with the identification of
appropriate variance models for spatial data (Cressie, 1991). Gilmour et al. (1997) demonstrate
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2.5 Inference: Fixed effects

its usefulness for the identification of the sources of variation in the analysis of field experiments.
If the elements of the data vector (and hence the residual vector) are indexed by a vector of spatial
coordinates, si, i = 1, . . . , n, then the ordinates of the sample variogram are given by

vij =
1

2
[ẽi(si)− ẽj(sj)]2 , i, j = 1, . . . , n; i 6= j

The sample variogram is calculated from the triple (lij1, lij2, vij) where lij1 = |si1 − sj1| and lij2 =
|si2 − sj2| are the absolute displacements. As there will be many vij with the same displacements,
ASReml-R calculates the means for each absolute displacement pair lij1, lij2 in which case plot.asreml
displays the vector (lij1, lij2, v̄ij) as a perspective plot of the one or two surfaces indexed by the
absolute displacement group. In this case, the two directions may be on different scales.

If the coordinates do not form a complete lattice, the varioGram() method can be used to form var-
iograms based on polar coordinates. Given a coordinate system (x, y), a response vector z (from the
resid() method, say), a vector of directions and a strategy for binning distances, asreml varioGram()
will return a data frame of variogram estimates indexed by direction and distance suitable for a
trellis plot.

ASReml-R also computes the variogram from predictors of random effects which appear to have
a variance structure defined in terms of distance. The coordinates can be accessed using the
varioGram() function, see the ASReml-R Package Reference available at http://asreml.org under
Resources > ASReml docs and on the VSN International website https://www.vsni.co.uk, for
details.

2.5 Inference: Fixed effects

2.5.1 Introduction

Inference for fixed effects in linear mixed models introduces some difficulties. In general, the
methods used to construct F -tests in analysis of variance and regression cannot be used for the
diversity of applications of the general linear mixed model available in ASReml-R. One approach
would be to use likelihood ratio methods such as Welham and Thompson (1997) although their
approach is not easily implemented.

Wald-type test procedures are generally favoured for conducting tests concerning τ . The traditional
Wald statistic to test the hypothesis H0 : Lτ = l for given L, r × p, and l, r × 1, is given by

W = (Lτ̂ − l)ᵀ{L(X
ᵀ
H−1X)−1L

ᵀ}−1(Lτ̂ − l) (2.23)

and asymptotically, this statistic has a chi-square distribution on r degrees of freedom. These are
marginal tests, so that there is an adjustment for all other terms in the fixed part of the model. It
is also anti-conservative if p-values are constructed because it assumes the variance parameters are
known.

The small sample behaviour of such statistics has been considered by Kenward and Roger (1997)
in some detail. They presented a scaled Wald statistic, together with an F -approximation to its
sampling distribution which they showed performed well in a range (though limited in terms of the
range of variance models available in ASReml-R) of settings.
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2.5 Inference: Fixed effects

In the following we describe the facilities currently available in ASReml-R for conducting inference
concerning terms which are in the dense fixed effects model component of the general linear mixed
model. These facilities are not available for any terms in the sparse model. These include facilities
for computing two types of Wald statistics and partial implementation of the Kenward and Roger
adjustments.

2.5.2 Incremental and Conditional Wald Statistics

The basic tool for inference is the Wald statistic defined in equation 14.1. However, there are
several ways L can be defined to construct a test for a particular model term, two of which are
available in ASReml-R. An F-statistic is obtained by dividing the Wald statistic by r, the numerator
degrees of freedom. In this form it is possible to perform an approximate F test if we can deduce
the denominator degrees of freedom. For balanced designs, these Wald F statistics are numerically
identical to the F-tests obtained from the standard analysis of variance.

The first method for computing Wald statistics (for each term) is the incremental form. For this
method, Wald statistics are computed from an incremental sum of squares in the spirit of the
approach used in classical regression analysis (see Searle; 1971). For example, if we consider a
very simple model with terms relating to the main effects of two qualitative factors A and B, given
symbolically by

y ∼ 1 + A + B

where 1 represents the constant term (µ), then the incremental sums of squares for this model can
be written as the sequence

R(1)

R(A|1) = R(1,A)−R(1)

R(B|1,A) = R(1,A,B)−R(1,A)

where the R(·) operator denotes the reduction in the total sums of squares due to a model containing
its argument and R(·|·) denotes the difference between the reduction in the sums of squares for any
pair of (nested) models. Thus R(B|1, A) represents the difference between the reduction in sums
of squares between the maximal model

y ∼ 1 + A + B

and
y ∼ 1 + A

Implicit in these calculations is that

• we only compute Wald statistics for estimable functions (Searle; 1971, p 408)

• all variance parameters are held fixed at the current REML estimates from the maximal model

In this example, it is clear that the incremental Wald statistics may not produce the desired test
for the main effect of A, as in many cases we would like to produce a Wald statistic for A based on

R(A|1,B) = R(1,A,B)−R(1,B)

21



2.5 Inference: Fixed effects

The issue is further complicated when we invoke marginality considerations. The issue of marginal-
ity between terms in a linear (mixed) model has been discussed in much detail by Nelder (1977). In
this paper Nelder defines marginality for terms in a factorial linear model with qualitative factors,
but later (Nelder; 1994) extended this concept to functional marginality for terms involving quanti-
tative covariates and for mixed terms which involve an interaction between quantitative covariates
and qualitative factors. Referring to our simple illustrative example above, with a full factorial
linear model given symbolically by

y ∼ 1 + A + B + A.B

then A and B are said to be marginal to A.B, and 1 is marginal to A and B. In a three way factorial
model given by

y ∼ 1 + A + B + C + A.B + A.C + B.C + A.B.C

the terms A, B, C, A.B, A.C and B.C are marginal to A.B.C. Nelder (1977, 1994) argues that
meaningful and interesting tests for terms in such models can only be conducted for those tests
which respect marginality relations. This philosophy underpins the following description of the
second Wald statistic available in ASReml-R, the so-called conditional Wald statistic. This method
is invoked by specifying ssType = conditional in wald.asreml(). ASReml-R attempts to construct
conditional Wald statistics for each term in the fixed dense linear model so that marginality relations
are respected. As a simple example, for the three way factorial model the conditional Wald statistics
would be computed as

Term Sums of Squares M code
1 R(1) .

A R(A | 1,B,C,B.C) = R(1,A,B,C,B.C) - R(1,B,C,B.C) A

B R(B | 1,A,C,A.C) = R(1,A,B,C,A.C) - R(1,A,C,A.C) A

C R(C | 1,A,B,A.B) = R(1,A,B,C,A.B) - R(1,A,B,A.B) A

A.B R(A.B | 1,A,B,C,A.C,B.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.C,B.C) B

A.C R(A.C | 1,A,B,C,A.B,B.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.B,B.C) B

B.C R(B.C | 1,A,B,C,A.B,A.C) = R(1,A,B,C,A.B,A.C,B.C) - R(1,A,B,C,A.B,A.C) B

A.B.C R(A.B.C | 1,A,B,C,A.B,A.C,B.C) = R(1,A,B,C,A.B,A.C,B.C,A.B.C) -
R(1,A,B,C,A.B,A.C,B.C) C

Of these the conditional Wald statistic for the 1, B.C and A.B.C terms would be the same as the
incremental Wald statistics produced using the linear model

y ∼ 1 + A + B + C + A.B + A.C + B.C + A.B.C

The preceding table includes a marginality or M code reported when conditional Wald statistics are
requested. All terms with the highest M code letter are tested conditionally on all other terms in
the model, that is, by dropping the term from the maximal model. All terms with the preceding M

code letter, are marginal to at least one term in a higher group, and so forth. For example, in the
table, model term A.B has M code B because it is marginal to model term A.B.C and model term A
has M code A because it is marginal to A.B, A.C and A.B.C. Model term mu (M code .) is a special
case in that it is marginal to factors in the model but not to covariates.

Consider now a nested model which might be represented symbolically by

y ∼ 1 + REGION + REGION.SITE

For this model, the incremental and conditional Wald tests will be the same. However, it is not
uncommon for this model to be specified as

y ∼ 1 + REGION + SITE
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with SITE identified across REGION rather than within REGION. Then the nested structure is hidden
but ASReml-R will still detect the structure and produce a valid conditional Wald F-statistic. This
situation will be flagged in the M code field by changing the letter to lower case. Thus, in the nested
model, the three M codes would be ., A and B because REGION.SITE is obviously an interaction
dependent on REGION. In the second model, REGION and SITE appear to be independent factors
so the initial M codes are ., A and A. However they are not independent because REGION removes
additional degrees of freedom from SITE, so the M codes are changed from ., A and A to ., a and A.

We advise users that the aim of the conditional Wald statistic is to facilitate inference for fixed
effects. It is not meant to be prescriptive nor is it foolproof for every setting.

The Wald statistics are collectively returned by wald.asreml(). The basic table includes the numer-
ator degrees of freedom (denoted ν1i) and the incremental Wald F-statistic for each term. To this
is added the conditional Wald F-statistic and the M code if ssType=”conditional”.

2.5.3 Kenward and Roger Adjustments

In moderately sized analyses, ASReml-R can also calculate the denominator degrees of freedom
(DenDF, denoted by ν2i, (Kenward and Roger; 1997)) and a probability value if these can be com-
puted. They will be for the conditional Wald F-statistic if it is reported. The denDF argument
of wald.asreml() controls the suppression (denDF = ”none”) or the use of a particular algorith-
mic method: denDF = ”numeric” for numerical derivatives or denDF = ”algebraic” for algebraic
derivatives. The value in the probability column is computed from an Fν1i,ν2i reference distribution.
When the DenDF is not available, it is possible, though anti-conservative, to use the residual degrees
of freedom for the denominator.

Kenward and Roger (1997) pursued the concept of construction of Wald-type test statistics through
an adjusted variance matrix of τ̂ . They argued that it is useful to consider an improved estimator
of the variance matrix of τ̂ which has less bias and accounts for the variability in estimation of the
variance parameters. There are two reasons for this. Firstly, the small sample distribution of Wald
tests is simplified when the adjusted variance matrix is used. Secondly, if measures of precision are
required for τ̂ or effects therein, those obtained from the adjusted variance matrix will generally be
preferred. Unfortunately the Wald statistics are currently computed using an unadjusted variance
matrix.

2.5.4 Approximate stratum variances

The svc method returns approximate stratum variances and degrees of freedom for simple variance
components models.

For the linear mixed-effects model with variance components (setting σ2
H

= 1) whereG = ⊕qj=1γjIbj ,
it is often possible to consider a natural ordering of the variance component parameters including
σ2. Based on an idea due to Thompson (1980) ASReml-R computes approximate stratum degrees
of freedom and stratum variances by a modified Cholesky diagonalisation of the expected (or aver-
age) information matrix. That is, if F is the average information matrix for σ, let U be an upper
triangular matrix such that F = U ′U . Further we define

U c = DcU
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2.5 Inference: Fixed effects

where Dc is a diagonal matrix whose elements are given by the inverse elements of the last column
of U ie dcii = 1/uir, i = 1, . . . , r. The matrix U c is therefore upper triangular with the elements in
the last column equal to one. If the vector σ is ordered in the natural way, with σ2 being the last
element, then we can define the vector of so called pseudo stratum variance components by

ξ = U cσ

Thence
var (ξ) = D2

c

The diagonal elements can be manipulated to produce effective stratum degrees of freedom (Thomp-
son; 1980) viz

νi = 2ξ2i /d
2
cii

In this way the closeness to an orthogonal block structure can be assessed.
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3 Fitting the mixed model

This chapter begins with a brief introduction covering data frame preparation, fitting the linear
model and the fitted asreml object followed by a detailed description of the asreml() function call
and some technical details of model fitting including the treatment of missing values and setting
initial values for variance parameters. The basic concepts are illustrated using a real example and
pointers to following chapters are given. For consistency, the same data are also used for illustration
in later chapters where possible.

Advanced topics such as models for variance components or genetic models are considered in later
chapters. Chapter 7 gives a lengthy set of additional worked examples.

3.1 The data frame

Data for analysis using ASReml-R are generally contained in a text file or a spreadsheet and are
read into a data frame using the appropriate R functions. Variates and factors in the data frame
are then resolved through the data argument of the asreml() function call.

The first 25 lines of the comma separated text file nin89.csv containing the NIN field trial data
described in Section 1.3.1 are reproduced below. Note that the data are in field order (rows within
columns) and a header line (first row) is included. In this case there are 11 comma separated
data fields (Variety. . . Column) and the complete file has 224 data rows, one for each variety in each
replicate.

Variety,ID,pid,raw,Replicate,nloc,yield,lat,long,Row,Column

LANCER,1,1101,585,1,4,29.25,4.3,19.2,16,1

BRULE,2,1102,631,1,4,31.55,4.3,20.4,17,1

REDLAND,3,1103,701,1,4,35.05,4.3,21.6,18,1

CODY,4,1104,602,1,4,30.1,4.3,22.8,19,1

ARAPAHOE,5,1105,661,1,4,33.05,4.3,24,20,1

NE83404,6,1106,605,1,4,30.25,4.3,25.2,21,1

NE83406,7,1107,704,1,4,35.2,4.3,26.4,22,1

NE83407,8,1108,388,1,4,19.4,8.6,1.2,1,2

CENTURA,9,1109,487,1,4,24.35,8.6,2.4,2,2

SCOUT66,10,1110,511,1,4,25.55,8.6,3.6,3,2

COLT,11,1111,502,1,4,25.1,8.6,4.8,4,2

NE83498,12,1112,492,1,4,24.6,8.6,6,5,2

NE84557,13,1113,509,1,4,25.45,8.6,7.2,6,2
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3.1 The data frame

NE83432,14,1114,268,1,4,13.4,8.6,8.4,7,2

NE85556,15,1115,633,1,4,31.65,8.6,9.6,8,2

NE85623,16,1116,513,1,4,25.65,8.6,10.8,9,2

CENTURAK78,17,1117,632,1,4,31.6,8.6,12,10,2

NORKAN,18,1118,446,1,4,22.3,8.6,13.2,11,2

KS831374,19,1119,684,1,4,34.2,8.6,14.4,12,2
...

This is typical of the required format: a matrix of observations with a row for each sampling unit
and columns containing variates, covariates, factors, weights and identities in any convenient order.
An optional, though recommended, header line can be used to name the data columns and missing
values are denoted by NA.

A data frame is normally created from a text file source using an R function call like:

> nin89 <- read.table(file = "nin89.csv", header = T, sep = ",")

Consult the R documentation for a detailed description of importing data but some general points
to note are:

• blank lines are ignored.

• it is sensible to include a header line in the data file; if no header line is included, the columns
are labelled V1. . . Vn where n is the number of columns.

• the same column label should not be repeated. The numerals 1, 2, etc are appended to
subsequent repeated column labels.

• NA is the only acceptable code for missing values.

• in comma separated text (.csv) files

– consecutive commas imply a missing value.

– provided the number of fields is consistent, a line beginning (ending) with a comma will
generate NA for that observation in the first (last) variate or a zero length string if a
text field.

• blanks may be embedded in text fields provided the field delimiter is not also the space
character, otherwise the string must be enclosed in quotes.

• too many or too few data fields on a line cause an error.

Character fields such as Variety above are automatically converted to factors with read.table().
However, numeric fields such as Replicate remain as variates so that the user must manually convert
numeric fields into factors as required. The utility function asreml.read.table() offers a convenient
alternative; asreml.read.table() reads data from a text file and automatically converts variates whose
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3.2 Introducing the asreml() function call

names begin with a capital letter in the header line into factors. So, for the NIN data

> nin89 <- asreml.read.table(file = "nin89.csv", header = T, sep = ",")

creates a data frame in which pid, raw, nloc, yield, lat and long are variates, but Variety, ID, Replicate,
Row and Column are factors. This is equivalent to the sequence

> nin89 <- read.table(file = "nin89.csv", header = T, sep = ",")

> nin89$ID <- factor(nin89$ID)

> nin89$Replicate <- factor(nin89$Replicate)

> nin89$Row <- factor(nin89$Row)

> nin89$Column <- factor(nin89$Column)

3.2 Introducing the asreml() function call

A complete asreml() function call for a simple randomised complete block (RCB) analysis of the
NIN yield data is

> nin89.asr <- asreml(fixed = yield ~ Variety, random = ~idv(Replicate), residual =

~idv(units), na.action = na.method(x = "include"), data = nin89)

where nin89.asr is the name we have chosen for the returned object. The key elements of this call
are outlined below while the components of the returned object are described in Section 3.3.

3.2.1 Model formulae: specifying the linear mixed model

The linear model is specified in the fixed (required), random (optional) and residual (error compo-
nent) arguments as formula objects. A third optional model argument sparse is also available but
is not used explicitly (see also Section 3.10) in this example.

The fixed terms in the model are specified as a formula with the response on the left of a ∼ operator
and the terms separated by + operators on the right. In this case Variety is a fixed factor in a
model for the response variate yield so that the fixed argument is given as

> nin89.asr <- asreml(fixed = yield ~ Variety, ...)

There must be at least one fixed effect in the model and the response may only be specified in the
fixed argument. So, if the intercept was the only fixed term in the model then the fixed argument
would be

> nin89.asr <- asreml(fixed = yield ~ 1, ...)

The random terms in the model are specified as a formula. However, unlike the fixed formula there
is no response on the left of the ∼ operator. In this example Replicate is a random term so the
random argument is

> nin89.asr <- asreml(..., random = ~idv(Replicate), ...)

The residual or error component of the model is specified in a formula object through the residual
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3.3 Components of the fitted model: the asreml object

argument. The default is a simple error term representing independent and identically distributed
(IID) effects and does not need to be formally specified. However, a special factor units defined
as factor(seq(1,n)) where n is the number of observations, is always automatically generated by
asreml(), so that the default error model in this case could be specified explicitly in the call

> nin89.asr <- asreml(..., residual = ~idv(units), ...)

3.2.2 Finding the data

The data argument to asreml() is an optional, though strongly recommended, argument that iden-
tifies a data frame containing the variables named in the model specification. The data frame is
nin89 in this case. If the data argument is missing then ASReml-R attempts to obey the usual rules
for resolving variate names, however, this is not always possible in complex situations with certain
special model functions.

3.3 Components of the fitted model: the asreml object

A call to asreml() produces an object of class asreml which contains numerous components of the
fit including

• the REML log-likelihood

• best linear unbiased predictors (BLUPs) of the random effects

• generalised least squares estimates of the fixed effects

• REML estimates of variance components

• (optionally) part of the inverse coefficient matrix

• the inverse of the average information matrix

• residuals and fitted values from the linear model.

A complete description of the components of an asreml object is given in the ASReml-R Package
Reference which is a pdf version of the ASReml-R help pages obtained in R by typing help(asreml).
This document is available at http://asreml.org under Resources > ASReml docs and on the
VSN International website https://www.vsni.co.uk.

3.3.1 Methods and related functions

Specific instances of the standard extractor functions coef(), resid() and fitted() exist, as do sum-
mary(), plot() and predict() (see Chapter 6) methods. An anova type method is implemented by
wald() (see Section 3.14).

The summary.asreml() function returns a list with a range of components. The variance components
are returned in
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3.6 Fixed terms

> summary(nin89.asr)$varcomp

and the coefficients from the fixed, random and sparse parts of the model are summarised in the
coef.fixed, coef.random and coef.sparse components. For example, the fixed effects for Variety are
given by

> summary(nin89.asr, coef = TRUE)$coef.fixed

3.4 A note on data order

The observations must be presented in the order specified by the error model, that is, the value of
the residual argument. The assumption of separability is implicit in the use of the colon operator
(:). Furthermore, the sort order outer:inner of the observations is implied by the order of appearance
of the factors in the residual formula. In the case, for example, where

> residual = ~ar1v(Column):ar1(Row)

the data is assumed to be sorted as rows within columns. Note that if the sort order of observations
is incorrect an error is generated.

3.5 Getting help

A complete description of the asreml object is given in the ASReml-R Package Reference, see above
for details, and can be obtained from the help system within R:

> `?`(asreml)

or

> help(asreml)

generates text based help or html help depending on the platform and help system state.

3.6 Fixed terms

3.6.1 Dense fixed terms

The fixed model formula specifies the response, fixed factors, interactions and covariates for which
standard errors and tests of significance are required. These terms may also include those specified
by the relevant model functions from Table 3.1. The fixed formula must contain at least one term
which may simply be the intercept. By default the intercept is included in the fixed model; for
example,

> asreml(fixed = y ~ Variety, ...)

includes an intercept plus the main effects for Variety. To specify a model with no overall mean,
include a -1 after ∼ in the list of primary fixed terms, for example, use
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3.6 Fixed terms

> asreml(fixed = y ~ -1 + Variety, ...)

An intercept-only fixed model is specified by including a 1 only after ∼ , for example,

> asreml(fixed = y ~ 1, random = ...)

Terms can be modified or generated by special model functions such as lin(). For example, to
include a linear (single degree of freedom) effect of Row (a factor with 22 levels) use

> asreml(fixed = y ~ lin(Row) + ...)

Model functions also exist to generate orthogonal polynomials (pol() and leg()) and to fit terms
conditionally (at(); Table 3.1 and Section 3.8). Note that fixed is the only model formula where
the response may be specified.

Table 3.1: Summary of reserved names and special functions with their typical usage; fixed (f) or
random (r)

term purpose usage

reserved names

mv fits missing values as covariates. An example of its use is in spatial analyses, for ex-
ample, where computing advantages arising from a balanced spatial layout can be ex-
ploited. Missing values in the response are handled in two ways using the na.method()
function. If na.action = na.method(y=”omit”), records containing missing values in
the response are deleted. If na.action = na.method(y=”include”), missing values are
estimated and a factor labelled mv is included in the model frame. If a variate labelled
mv already exists in the data frame it will be overwritten. For a multivariate analysis,
missing values must currently be included

f

trait used with multivariate data to fit the individual trait means. It is interacted with
other factors to estimate their effects for all traits. It is formally equivalent to the
intercept (1) but is a more natural label for use with multivariate data. If a variate
labelled trait already exists in the data frame it will be overwritten.

f, r

units a factor with a level for each experimental unit; allows a second error term to be
explicitly fitted.

r

model functions

at(f,l) condition on level l = 1, . . . , k of factor f. That is, defines a binary variable which is
1 if the factor f has level l for the observation. For example, to fit a row factor only
for site 3, use the expression at(site,3):row. Note that if l is numeric, then the level of
f is chosen as the lth in factor (sorted) order. Note also that when used with spline
terms, such as at(f,2):spl(x) then the knot points are derived from all of factor f , not
just level 2.

f, r

dev(x) forms a factor with a level for each unique value of x. r
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Summary of reserved names special functions

term purpose usage

gpf(obj) forms a new factor (obj) from an existing factor by merging a subset of its levels.
The name obj must also appear as a component of the combine argument to asreml()
where the existing factor and the levels to merge are defined with a call to levels() The
function Levels is defined as: function(f, x) where f is the name of an existing factor and
x is a vector of length length(levels(f)) defining the levels of f to merge. For example, if
Site has levels ”1”, ”2” and ”3”, combine=list(A=Levels(Site, c(”1”,”2”,”1”))) creates
a new factor A with levels ”1” and ”2” by merging levels ”1” and ”3” of Site, and
would be included in the model as gpf(A). While the actions of gpf() can be duplicated
outside asreml(), gpf() is necessary if the asreml method predict() is to be used.

f, r

grp(obj) Groups contiguous columns of data to be treated as a single factor named ”obj”. The
columns of data are identified by a character or numeric vector component obj of the
group argument to asreml().

r

leg(x,t) forms t legendre polynomials from the values in x; the mean is excluded if t is negative.
For example, leg(time,2) is a factor with three columns: a constant in the first, centred
and scaled linear covariate in the second and centred and scaled quadratic covariate
in the third. leg() could be interacted with a design factor to fit random regression
models.

f, r

lin(f) treats the named factor as a variate. The function is defined for f being a simple
factor, trait and units. The lin(f) function does not center or scale the variable.

f, r

link(a,b) ensures that the structures for terms a and b are contiguous. The function would typ-
ically be used in random coefficient regression, where a covariance between intercept
and slope might be required.

r

mbf(obj) Includes obj as a set of covariates to be fitted as a single term in a similar way to
grp. The name obj must also appear as a component of the mbf argument to asreml()
where the data frame holding the covariates is identified along with a key field for
merging records with those in data.

r

pol(x,t) forms t orthogonal polynomials from the values in x; the mean is excluded if t is
negative. For example, pol(time,2) is a factor with three columns: a constant in
the first, centred and scaled linear covariate in the second and centred and scaled
quadratic covariate in the third. pol() could be interacted with a design factor to fit
random regression models.

f, r

sbs(obj) forms a new factor (obj) from an existing factor by selecting a subset of its levels.
The name obj must also appear as a component of the prune argument to asreml()
where the existing factor and the subset of levels to select are defined with a call to
Subset(). The function Subset is defined as: function(f, x) where f is the name of an
existing factor and x is a character or numeric vector of levels to select. For example,
prune=list(A=Subset(Site, c(2,3))) creates a new factor A by selecting the second and
third levels of Site, and would be included in the model as sbs(A). While the actions
of sbs() can be duplicated outside asreml(), sbs() is necessary if the asreml method
predict() is to be used.

f, r

spl(x, k) Random component of a cubic spline for covariate x. spl(x), dev(x) and possibly
lin(x) are used when fitting cubic splines. The cubic spline is composed of a random
nonlinear component imposed on a linear trend. It is fitted by including a special
random factor, spl(x), and the fixed covariate (x) in the linear model. Knot points
are placed at the design points if length(unique(x)) < k otherwise there are k equally
spaced knot points over the range of x. The default for k is 50. If k is omitted
then knots can be set in asreml.options(). Also, explicit knot points are set in the
knot.points argument to asreml().

r
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Summary of reserved names special functions

term purpose usage

3.6.2 Sparse fixed terms

The sparse argument specifies those covariates, factors and interactions for which standard errors
and tests of significance are not required. These effects are estimated using sparse matrix methods
that typically require less memory and less execution time. ASReml-R automatically includes
missing values in the sparse component with a factor named mv. This is a reserved word and
should not be used to label variates or factors.

3.6.3 Covariates

For analysis purposes it is recommended that covariates be centred or rescaled to have a variance of
1 to avoid failure to detect singularities. In addition, missing values in covariates are replaced with
zeros so it is important in these circumstances to centre the covariate in question. For example,
the command

> nin89$linrow <- as.numeric(nin89$Row) - mean(as.numeric(nin89$Row), na.rm = T)

could be used to create a mean centred row covariate. Care should also be exercised when scaling
variates for use in random coefficient or spline models.

3.7 Random terms

The random model formula specifies the factors, interactions, covariates and special terms that
comprise the random component of the model. These effects are estimated using sparse matrix
methods. Each random term will have a variance model associated with it which, when no variance
model function is specified, defaults to a scaled identity γIn or σ2In where γ is a variance ratio,
depending on whether a sigma or gamma parameterization is used for fitting. See page 63 under
Rules for combining variance models.

3.7.1 Initial values and constraints for variance parameters

Initial values and constraints for variance parameters are held in list objects that represent the
structure of the error variance matrix (referred to as R structures in this manual and denoted R
algebraically, see Chapter 4) and the variance matrix for the other random terms in the model
(referred to as G structures and denoted G algebraically). Initial values are for the parameters
being fitted so depend on the parameterization used. The default initial values are 0.1 for variance
ratios (when parameters are estimated using the gamma parameterization) and 0.1*v for variance
components (when parameters are estimated using the sigma parameterization), where v is half the
simple variance of the response. Using both parameterizations correlations are assumed to have a
starting value of 0.1. The corresponding default parameter constraints are P (positive) for variance
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component ratios, U (unconstrained) for correlations and P for variance components.

For example, in the simple RCB field trial analysis

> asreml(fixed = yield ~ Variety, random = ~idv(Replicate), residual = ~id(units), data =

nin89)

the gamma parameterization is used and a single variance component ratio is estimated for the
random Replicate term using an initial starting value of 0.1 and default constraint of P (that is, the
parameter is constrained to be positive).

The default starting values and boundary constraints may not be either adequate or appropriate in
all circumstances. There are two ways to alter the starting values and constraints from their default
state, both of which rely on exporting the internally generated names of the variance components
along with their values and constraints to an R object or external text file. The G.param and
R.param arguments are used to subsequently overwrite the default initial values and constraints in
an analysis. An initial value object is created by setting the start.values argument to asreml().

3.7.1.1 Replacing elements in an internal object

As an example, to set a different initial value for the Replicate component, the call

> nin89.sv <- asreml(fixed = yield ~ Variety, random = ~idv(Replicate), residual =

~id(units), na.action = na.method(x = "include"), data = nin89, start.values = TRUE)

returns a list object nin89.sv with components G.param, R.param and vparameters.table. The first
two components are list objects while vparameters.table is a data frame containing the parameter
names, their initial values and boundary constraints.

> iv <- nin89.sv$vparameters.table

> iv

Elements of this table can be set by the usual R replacement methods. The new initial value for
Replicate can be used in asreml() with the G.param argument. That is,

> nin89.asr <- asreml(fixed = yield ~ Variety, random = ~idv(Replicate), residual =

~id(units), na.action = na.method(x = "include"), data = nin89, G.param = iv)

3.7.1.2 Editing an external text file

An alternative is to specify a filename as the value of the start.values argument. This creates a
comma separated text file version of vparameters.table, with a header line and columns containing
the component name and its initial state. After editing this file, the revised initial values or
constraints can be used similarly to the above by specifying the text file name as the value of the
G.param argument. For example, the following call creates a comma separated textfile (filename)
for editing

> nin89.sv <- asreml(fixed = yield ~ Variety, random = ~idv(Replicate), residual =

~idv(units), na.action = na.method(x = "include"), data = nin89, start.values =
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"filename")

with the revised values included in the analysis by:

> nin89.sv <- asreml(fixed = yield ~ Variety, random = ~idv(Replicate), residual =

~idv(units), na.action = na.method(x = "include"), data = nin89, G.param = "filename")

Note that in the above sequence, a list with components G.param, R.param and vparameters.table is
still returned in nin89.sv.

3.7.2 Specifying variance structures

As stated above, the default variance model for a term in the random model is a scaled identity
(γIn or σ2In), that is, independent and identically distributed (IID). This is a special case of a
more general scaled parameterised matrix. An extensive range of variance models can be fitted
to terms in the random formula and error (residual) component of the model. These are specified
using special functions in the model formulae and are described in Chapter 4. For example, the
experimental units of nin89 are indexed by Column and Row, respectively. If we first augment the
data frame to complete the 22 row by 11 column array of plots, we could then specify a separable
first order autoregressive process (Gilmour et al.; 1997) in two dimensions by including

> residual = ~ar1v(Column):ar1(Row)

(assuming the data is correctly ordered as Row within Column) in the call, where ar1() is a special
function specifying a first order autoregressive variance model for both Column and Row, see Section
4.1. The complete range of possible variance models is presented in Table B.1.

The behaviour of these special functions can be different from the expected behaviour of standard
R functions; they generally return existing or altered attributes of objects and/or set up internal
structures for the model fitting algorithm. There are some restrictions on usage, notably nesting.
However, there are few instances where it is sensible to nest these functions, one exception being
models with random coefficients.

3.8 Conditional factors: the at() and dsum() functions

A conditional factor is a factor that is present only when another factor has a particular level. For
example, in a multi-environment trial analysis over 2 sites where each site is a randomised complete
block design, we could estimate separate Block variance components for each Site by including the
random term at(Site):Block. If no levels of the conditioning factor (Site in this case) are specified in
the at() function, a complete set of conditioning terms is generated. In this example at(Site):Block
expands to at(Site,1):Block + at(Site,2):Block. Note that this is also equivalent to fitting a diagonal
variance model using diag(Site):Block.

If the levels vector (l) of the conditioning factor (f) is specified as a numeric vector then it refers to
the levels of f in the order returned by levels(f). The at() function is only associated with random
terms and cannot be wrapped with a variance function as the results can be ambiguous. A similar
function dsum() is available for the residual formula and specifies a variance model for e as a direct
sum of l variance matrices, one for each level of the conditioning factor.
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The data observations are often partitioned into sections to which separate variance structures are
applied. For example, separate spatial structures and residual error variances would typically be
specified for each site in a multi-environment trial (MET) analysis.

It is conventional to use a variable in the data file to identify sections within the data. The data will
be sorted internally by ASReml-R (ie. the data file does not need to be ordered in any particular
way) and the variance structures for sections can then be specified using the dsum function, for
example:

residual = ~dsum(~id(units) | section)

for a simple analysis in which section is a column in the data file that codes the individual sections.
The dsum function (shorthand for direct sum) is new with Version 4 and performs several different
tasks:

– it tells ASReml-R that the variance structure for the residual error term is a direct sum structure
where different variance structures apply to the different levels of the sectioning variable in the
data.

If a model structure specified defines a residual matrix then a variance factor associated with the
appropriate sectioning level is added to the specified model to generate a variance matrix.

– it prunes the levels for a section so that only the levels of factors defining the residual variance
structure for that section are used in forming that variance structure.

Variance model functions in dsum

Correlation models were used in direct sum structures for the residual error term in Version 3 which
automatically added and estimated a scale parameter for each section. In Version 4 a variance model
function can be specified for one argument of the dsum component for each section. In this case
the section variance is automatically fixed at 1.0 to avoid over-parameterization. For each section,
ASReml-R counts the number of dimensions (1 for a single term, ≥ 2 for separable structures)
for which variance models are specified and if the count is > 1 the model is judged to be over-
parameterized and an error is returned.

Specifying the model using dsum

Often sections relate to sites (or trials or experiments) in the case where several related trials are
analysed together. For example, consider a MET data set comprising data for three sites, each laid
out in a row by column array coded by factors Row and Column in the data set. To model the
residuals at each site by a separate scaled AR1×AR1 variance structure, we could write:

residual = ~dsum(~ar1(Column):ar1(Row) | Site)

Alternatively, a scaled AR1×AR1 variance structure for sites 1 and 3, but a scaled ID×AR1 structure
for site 2, could be coded as:
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3.8 Conditional factors: the at() and dsum() functions

residual = ~dsum(~ar1(Column):ar1(Row) + id(Column):ar1(Row) | Site, levels = list(c(1,

3), c(2)))

or as

residual = ~dsum(~ar1(Column):ar1(Row) + id(Column):ar1(Row) | Site, levels =

list(c("Site1", "Site3"), c("Site2")))

where Site1, Site2 and Site3 are the three site labels. An alternative is to provide separate dsum
statements for the AR1×AR1 and ID×AR1 sections:

residual = ~dsum(~ar1(Column):ar1(Row) | Site, levels = c(1, 3))

+dsum(~id(Column):ar1(Row) | Site, levels = c(2))

Making use of variance model functions in dsum, other variants on this code are:

residual = ~dsum(~ar1v(Column):ar1(Row) + idv(Column):ar1(Row) | Site, levels = list(c(1,

3), c(2)))

and

residual = ~dsum(~ar1(Column):ar1v(Row) + id(Column):ar1(Row) | Site, levels = list(c(1,

3), c(2)))

For the former, the error variance would be fixed at 1.0 for all three sites to avoid overparameter-
ization. For the latter, the error variances for sites 1 and 3 but not 2 would be fixed at 1.0. An
error would be returned for

residual = ~dsum(~ar1v(Column):ar1v(Row) + id(Column):ar1v(Row) | Site, levels =

list(c(1, 3), c(2)))

Error: Residual model overparameterized - structure has 2 variance models

For each of these definitions, ASReml-R will determine the particular levels in Row and Column for
each site and hence the appropriate sizes of the AR1 and ID matrices, and variances associated with
the levels of Site will be added to correlation structures.

Important A correlation/variance structure needs to be specified for every level of the sectioning
factor, in which case

residual = ~dsum(~ar1(Column):ar1(Row) | Site, levels = c(1, 3))

would fail as there is no variance structure specified for site 2.

Specifying variance structures using dimensions
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3.8 Conditional factors: the at() and dsum() functions

Although less conventional, variance structures can also be specified using dimensions rather than
factor names. For example, consider a simple MET comprising three trials arranged in rectangular
arrays of dimension 12, 10 and 9 rows by 6, 8 and 18 ranges for trials 1, 2 and 3, respectively.
For data ordered rows within columns within trials (trials coded as Site in the data frame), an
AR1×AR1 variance structure for trials 1 and 3 and an IDV×AR1 structure for trial 2, could be
coded as:

residual = ~dsum(~ar1(6):ar1(12) | Site, levels = c(1)) + dsum(~ar1(8):ar1(10) | Site,

levels = c(2))

+dsum(~ar1(18):ar1(9) | Site, levels = c(3))

The outer argument to dsum

The outer argument to dsum has been introduced to enable modelling multiple independent sec-
tions of correlated observations with a common variance structure and common parameters within
sections. The sections can be of different sizes. For example:

residual=~ dsum(~id(Range):ar1(Row)| Site,levels=c(1:2,7)) +

dsum(~id(Range):ar1(Row)| Site,levels=3:4, outer=T) +

dsum(~id(Range):ar1(Row)| Site,levels=5:6, outer=T),

would model separate error variance and spatial correlation parameters for levels 1, 2 and 7 of Site
and the same error variance and spatial correlation parameters for levels 3 and 4 of the factor Site
and likewise for levels 5 and 6 of Site.

Two rules for defining the residual error term

The following two rules are not new to ASReml-R with Version 4 but are included here as a reminder:

Rule 1 The number of effects in the residual term must be equal to the number of data units
included in the analysis.

Rule 2 Where a separable variance structure is specified for the residual error term, each combi-
nation of levels of the single model terms specifying this structure must uniquely identify one unit
of the data. For example, in the spatial analysis of a trial comprising 4 replicates of 24 varieties ar-
ranged as a rectangular array of dimension 4 rows by 24 columns (rows are replicates), a, AR1 × AR1
variance structure for the residuals can be specified by the model term ar1(column):ar1(row),
where column and row are the appropriate columns in the data file. However, the number of data
units must be the product of the number of levels for row and the number of levels for column;
96 in this case. If this is not the case, or if more than one unit is associated with some row
column combination, ASReml-R will return an error message and it will not be possible to use
ar1(column):ar1(row) for residual error. If there are fewer than 96 units and each row-column
combination present is associated with one unit, then the data would need to be augmented by
completing (padding out) the full rectangular array allow an appropriate analysis.

These rules will always be satisfied for a single section of data defined either by default (ie. with
no residual variance structure specified) or in terms of the units factor. However, a mismatch in
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3.11 Generalized linear models

both size and ordering is possible when either multiple sections are present (as in MET analysis)
or when non-identity variance model functions are used.

3.9 Weights

Weighted analyses are achieved by using the weights = wt argument to asreml(), where wt is a
variate in the data frame. If these are relative weights (to be scaled by the units variance) then
this is all that is required; for example, the number of sampling units (wt=c(3, 1, 3, . . . )). If
they are absolute weights, that is, the reciprocal of known variances, the units variance should be
constrained to 1. This can be done by one of two ways:

1. one of the methods described in Section 3.7.1, that is, editing a default R parameter list
object with asreml.gammas.ed() (start.values=T) or create and edit an external text file with
start.values=”filename”, changing the constraint of the units variance to F.

2. Set the units variance with the family argument

> fm <- asreml(..., family = asr_gaussian(dispersion = 1), ...)

3.10 Missing values

Missing values have been included in nin89.csv for the convenience of fitting spatial models in
subsequent examples. By default, missing values in covariates or factors cause an error: na.action
= na.method(x = ”fail”). Missing values are treated as follows:

3.10.1 Missing values in the response

Records with missing values in the response are included by default, na.action = na.method(y =
”include”), and are estimated as a consequence of fitting the model. A factor labelled mv is created
and included in the sparse equations, and the solutions are returned in coef(object)$sparse. An
alternative action is ”omit” which excludes units with missing values in the response. Missing
values must be estimated in a multivariate analysis.

3.10.2 Missing values in the explanatory variables

Covariates Records with missing values in covariates are only discarded if na.action = na.method(x
=”omit”). If included, they are treated as zeros which may only be reasonable if the covariate
values are centred.

Design factors Missing values are allowed in design factors and handled as for covariates. Where
this occurs, no formal level is assigned to the factor for that record, however, the missing value is
replaced by a zero in the fitting process.

3.11 Generalized linear models

asreml() includes family functions for fitting Generalized Linear Models (McCullagh and Nelder;
1994). These differ from the standard family functions through the addition of a dispersion argument
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which determines whether the dispersion parameter is fixed or estimated (dispersion=NA). Table
3.2 lists the link functions that can be used to connect the linear predictor η to the mean (µ) on
the data scale.

Table 3.2: Families and link functions

Link Function gaussian binomial poisson Gamma

identity η = µ D * *

sqrt η =
√
µ *

log η = log(µ) * D *

inverse η = 1/µ * D

logit η = µ/(1− µ) D

probit η = Φ−1(µ) *

cloglog η = log(− log(1− µ)) *

where µ is the mean on the data scale, η = Xτ is the linear predictor
on the underlying scale and D is the default.

3.12 Generalized Linear Mixed Models

There is the capacity to fit a wider class of models which include additional random effects for
non-normal error distributions. The inclusion of random terms in a GLM is usually referred to
as a Generalized Linear Mixed Model (GLMM). For GLMMs, asreml() uses what is commonly
referred to as penalized quasi-likelihood or PQL (Breslow and Clayton; 1993). The technique is
also known by other names, including Schall’s technique (Schall; 1991), pseudo-likelihood (Wolfinger
and O’Connell; 1993) and joint maximisation (Harville and Mee; 1984; Gilmour et al.; 1985). It is
implemented in many statistical packages, for instance, in the GLMM procedure (Welham; 2005)
and the IRREML procedure of Genstat (Keen; 1994), in MLwiN (Goldstein et al.; 1998), in the
GLMMIXED macro in SAS and in the GLMMPQL function in R, to name a few.

The PQL technique is based on a first order Taylor series approximation to the likelihood. It has
been shown to perform poorly for certain types of GLMMs. In particular, for binary GLMMs where
the number of random effects is large compared to the number of observations, it can underestimate
the variance components severely (up to 50%) (for example, Breslow and Lin (1995); Goldstein and
Rasbash (1996); Rodriguez and Goldman (2001); Waddington et al. (1994)). For other types of
GLMMs, such as Poisson data with many observations per random effect, it has been reported to
perform quite well (Breslow; 2003, for example). As well as the above references, users can consult
McCulloch and Searle (2001) for more information about GLMMs.

Most studies investigating PQL have focussed on estimation bias. Much less attention has been
given to the wider inferential issues such as hypothesis testing. In addition, the performance of this
technique has only been assessed on a small set of relatively simple GLMMs. Anecdotal evidence
from users suggests that this technique can give very misleading results in certain situations.

Therefore, we cannot recommend the use of this technique for general use. It is included in the
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current version of asreml() for advanced users. It is highly recommended that its use be accompanied
by some concerned. For instance, one way of doing this would be by simulating data using the
same design and using parameter values similar to the parameter estimates achieved, such as used
in Millar and Willis (1999).

3.13 Multivariate analysis

Multivariate analysis is used when we are interested in estimating the correlations between distinct
traits (for example, fleece weight and fibre diameter in sheep) and for repeated measures of a single
trait. The term multivariate analysis is used here in the narrow sense of a multivariate mixed
model. There are many other multivariate analysis techniques which are not covered by asreml().

3.13.1 Model specification

If the response term specified in the fixed formula of a asreml() call is a matrix then a multivariate
analysis is automatically performed. That is, for response variates y1 , . . . , yk in the data frame, a
multivariate analysis would be specified with the call

> asreml(fixed = cbind(y_1, ..., y_k) ~ trait, ...)

In this case, asreml() creates a factor trait (the multivariate equivalent to the univariate general
mean) with the names of the response variates as levels.

A multivariate analysis in asreml() can be specified in one of two ways:

• specifying a matrix as the response in the fixed formula, as noted above. For the wether
trial data, the term trait is a factor generated by asreml() with ntr = 2 levels gfw and fdiam.
Internally, asreml() expands the data frame by repeating each row ntr times such that traits
are nested within experimental units,

• specifying the asmv=trait argument; this assumes that the data frame has been expanded
into a univariate form outside asreml(). In this case the order need not necessarily be traits
within units but the order of terms in the residual formula must reflect the data order. Note
that in this case trait refers to the factor in the data frame that defines the traits but is not
necessarily named trait.

The following examples illustrate the specification of multivariate models in asreml(), some compo-
nents of the returned object and the wald() method.

3.13.1.1 A repeated measures example

Wolfinger (1996) summarises a range of variance structures that can be fitted to repeated measures
data, demonstrating the models using the rat data set described in Section 1.3.2. The asreml()
function call for an analysis of the five repeated measures is:

> wolfinger.asr <- asreml(fixed = cbind(wt0, wt1, wt2, wt3, wt4) ~ trait * Treatment,

residual = ~id(units):us(trait, init = rep(0, 15)), maxit = 20, data = wolfinger)
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The use of rep(0,15) as initial values in the above call signals that in a multivariate analysis
reasonable starting values are to be calculated from the phenotypic variance-covariance matrix.
The fitted variance components are given by:

> summary(wolfinger.asr)$varcomp

3.13.1.2 A bivariate example

The asreml() function call for a basic bivariate analysis of the wether trial data described in Section
1.3.3 is:

> wether.asr <- asreml(cbind(gfw, fdiam) ~ trait + trait:Year, random = ~us(trait, init =

c(0.4, 0.3, 1.3)):Team + us(trait, init = c(0.2, 0.2, 2)):Tag, residual =

~id(units):us(trait, init = c(0.2, 0.2, 0.4)), data = orange)

A trace of the model’s convergence is held in the trace component:

> wether.asr$trace[, c(1, "final", "constraint")]

Final estimates of the variance components are given by summary() (illustrated above) and an
analysis of variance calculating the approximate denominator degrees of freedom and conditional
F-tests can be obtained by:

> wald(wth0.asr, denDF = "default", ssType = "conditional")

3.13.2 Specifying multivariate variance structures

A more sophisticated default error structure is required for multivariate analysis in ASReml-R.
Using the notation of Chapter 4, consider a multivariate analysis with nt traits and n units in
which the data are ordered traits within units. An algebraic expression for the variance matrix in
this case is

In ⊗Σ

where Σ (nt×nt ) is an unstructured variance matrix.

For a standard multivariate analysis

• the error structure must be specified as two-dimensional, with independent units and often
an unstructured variance matrix across traits.

– the residual for this model is therefore residual ∼ id(units):us(trait)

– missing values are allowed and must be fitted. asreml() automatically includes the
special factor mv in the sparse formula in such cases.

• for the default analysis, that is the response is specified as a matrix, the R structure must
reflect the data order of traits within units which means that the term units must appear
before trait in the residual formula.
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• variance parameters are variances, not variance ratios.

• the error structure is often specified as an unstructured variance matrix but correlation models
may also be used. asreml() attempts to detect such cases and fix or estimate the residual scale
parameter accordingly.

For example, with the Wolfinger data the times are equally spaced so we could fit a first order
autoregressive model using:

> asreml.options(gammaPar = TRUE)

> wolfinger.asr <- asreml(fixed = cbind(wt0, wt1, wt2, wt3, wt4) ~ trait * Treatment,

residual = ~id(units):ar1(trait), data = wolfinger)

• as noted previously, initial values for the variance matrices are given as the lower triangle of
the (symmetric) matrix specified row-wise,

• nominating reasonable initial values can be a problem. By default, asreml() uses half the
phenotypic variance in forming initial values.

3.14 Testing of terms: the wald() method

The type of object returned by the wald() method depends on the value of the denDF and ssType
arguments.

Incremental F-statistics

If denDF = ”none” and ssType = ”incremental” (the defaults), an object of class anova containing
a table of Wald statistics for fixed effects is returned. Terms in the table are tested sequentially,
which means that factors are adjusted for terms higher in the table (or not in the table), but
ignoring terms that occur below.

No denominator degrees of freedom is supplied as the reference distribution for each Wald statistic
is a χ2

k where k is the number of nonsingular effects in the term.

Conditional F-statistics

If at least one of denDF or ssType is set to anything other than the default, a data frame object is
returned that includes columns for the approximate denominator degrees of freedom or conditional
F-statistics depending on the combination of options chosen.

The data frame has 3 styles:

Source df F_inc F_con M

Source df ddf_inc F_inc P_inc

Source df ddf_con F_inc F_con M P_con

depending on whether conditional F-statistics are reported or whether the denominator degrees of
freedom are calculated. See Section 2.5 for more background on the contents of this table.
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The numerator degrees of freedom for each term is easily determined as the number of non-singular
effects involved in the term. However, in general calculation of the denominator degrees of freedom
is not trivial. ASReml-R will only attempt the calculation if specifically requested as it requires
further iterations of the model (using update.asreml()).

43



4 Specifying variance structures

This chapter introduces variance model specification in ASReml-R, a complex aspect of the mod-
elling process. To summarise the key concepts:

• the mixed linear model
y = Xτ +Zu+ e

has a residual term
e ∼ N(0, Rv(σr))

and random effects
u ∼ N(0, G(σg))

where, in the most complex forms
Rv = ⊕iRvi

G = ⊕jGj

and each
Rvi = Rvi(σri)

Gj = Gj(σgj )

where σri and σgj parameterise the respective variance models

• we use the terms R structure and G structure to refer to the matrices Rvi and Gj above in a
syntactic manner, respectively

• R and G structures are typically formed as a direct product of particular variance models

• the order of terms in a direct product must agree with the order of effects in the corresponding
model term

• variance models may be correlation matrices or variance matrices with equal or unequal variances
on the diagonal. A model for a correlation matrix (eg. ar1()) can be converted to an equal
variance form (eg. ar1v()) and to a heterogeneous variance form (eg. ar1h())

• variance components are estimated as gammas (relative to the overall scale parameter, σ2e) when
the gamma parameterization is used.

Chapter 2 gives theoretical details. We begin this chapter by considering an ordered sequence of
variance structures for the NIN variety trial (Section 4.1) as an introduction to variance modelling
in practice. We then consider the topics in detail.

Variance models are specified with special model functions in the random and residual formulae.
Scaled identity defaults are used if no variance model is explicitly specified. Table B.1 presents the
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complete range of variance models available in ASReml-R and details of individual (variance model)
function calls are given in Section 4.3. Most of the models listed in Table B.1 are correlation models
(id() to agau()) but these are easily generalised to:

• homogeneous variance models by appending a v to the function name, for example, converting
id() to idv() to specify IID errors,

• heterogeneous variance models by appending h to the function name, for example, converting
id() to idh() to specify independent but heterogeneous errors.

Rules for combining variance models and methods for setting initial values are given in Section 4.5.

4.1 A sequence of structures for the NIN field trial data

By way of introduction, six variance structures of increasing complexity are considered for the NIN
field trial data (Section 1.3.1). This is to give a general feel for variance modelling in ASReml-R
from a practical perspective and some idea of the types of models that are possible (Table B.1).

This section illustrates:

• changes to u and e and the assumptions regarding the variance of these terms

• the impact this has on the random formula for specifying the G structures for u and the residual
formulae for specifying the R structure(s) for the residuals in e

• for ease of exposition we first describe the models fitted and reported when the variance models
are explicitly specified. For the models in this section an alternative fitting algorithm based on
a gamma parameterization has advantages. In this section we indicate how ASReml-R can be
easily actioned to use this algorithm. In Section 4.8 we give one of the RCB data model examples
in this gamma parameterization, provide some alternative specifications and comment on the
summaries. In Section 4.1.2 we also show how some specifications can be reduced.

Model 1: randomised complete block (RCB) analysis - blocks fixed

> rcb.asr <- asreml(yield ~ Variety + Block, residual = ~idv(units), data = nin89)

uses an IDV variance structure for the residual error term assuming that e ∼ N(0, σ2eI224). The
model is therefore a fixed effect model and involves just one R structure and no G terms.

Model 1a: RCB analysis with G and R structures

> rcb.asr <- asreml(yield ~ Variety, random = ~idv(Replicate), residual = ~idv(units), data

= nin89)

The residual is specified as a variance matrix with var(e) = σ2eI224 and u is a vector of replicate
effects where var(u) = σ2rI4 . This model introduces the use of variance model functions in both
random and residual formulae to explicitly specify the G and R structures.

Note that when specifying G structures ASReml-R automatically adds a scale parameter if a corre-
lation model is specified (see Section 4.1.2 for more detail). At most one of the models specified in
a G structure can be a variance model. If the variance matrix of a term contains several component
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matrices then the problem of identifiability arises. For example, a random term

idv(A):idv(B)

with residual idv(units) produces a variance matrix of the form σ2aσ
2
bIa.b for A:B where the σ2a,

σ2b parameters are not identifiable.

Model 2: two-dimensional spatial model with correlation in one direction

> sp.asr <- asreml(yield ~ Variety, residual = ~idv(Column):ar1(Row), data = nin89)

This call specifies a two-dimensional spatial structure for error but with spatial correlation in the
row direction only. In this case var(e) = (σ2cI11) ⊗ Σr. The R structure is the direct product of
two matrices; a scaled identity matrix of order 11 and a autoregressive correlation matrix of order
22 with elements {σij} = ρ|i−j| for plots (in the same column) in rows i and j. Note that:

• the direct product structure is implied by the ”:” operator. The order in which factors appear in
the residual formula also specifies the order in which the data must be sorted. Because Column
is specified before Row, the implication is that the data are in the order rows within columns.
ASReml-R does not reorder the observations; if the data frame is not in the order specified by
residual then an error is generated and it must be reordered outside asreml().

• using a separable model for the R structure implies that the data can be regarded as a matrix
or array whose data is indexed by the levels of the factors that represent the rows and columns
of this array. In this field trial example these factors are Row and Column, respectively. For this
structure to be applicable, the data in this case must be augmented with 18 additional missing
values. Variety is arbitrarily coded as LANCER for all of the extra missing plots.

• ASReml-R automatically includes missing values in the sparse component with a factor named
mv (see Section 3.10).

Model 2a: two-dimensional spatial model

> sp.asr <- asreml(yield ~ Variety, residual = ~ar1v(Column):ar1(Row), data = nin89)

This extends model 2 by specifying a first order autoregressive variance model of order 11 for
columns (ar1v()). The R structure in this case is therefore the direct product of two autoregressive
matrices, one a variance matrix and one a correlation matrix, that is, var(e) = (σ2cΣc)⊗Σr.

Model 2b: two-dimensional spatial model with measurement error

> sp.asr <- asreml(yield ~ Variety, random = ~idv(units), residual =

~ar1v(Column):ar1(Row), data = nin89)

This model includes a factor with n = 224 levels in u. Since Z = I, var(y) = σ2unI224+(σ2cΣc)⊗Σr.
The quantity σ2un is the so-called measurement error variance or nugget variance in geostatistics.
units is a reserved name that ASReml-R constructs internally as seq(1,nrow(data)).
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Model 3: two-dimensional spatial model defined as a G structure

> sp.asr <- asreml(yield ~ Variety, random = ~ar1v(Column):ar1(Row), residual =

~idv(units), data = nin89)

This model is equivalent to 2b but with the spatial model defined as a G structure rather than an
R structure. As we discussed in 1a,

• when the G structure term involves more than one model, all but one of the models must be a
correlation model (Section 4.5). In this example ar1v() is the variance model.

Modelling Column:Row as a G structure is a useful approach to handling incomplete arrays because
not all combinations of the levels of Row and the levels of Column need to be present in the data.

Table 4.1: Sequence of variance structures for the NIN field trial

asreml() call random term (G) residual error term (R)

model model

1 2 1 2

1 yield ∼ Replicate + Variety - - - units idv() -

1a yield ∼ Variety,
random = ∼ idv(Replicate),
residual = ∼ idv(units)

Replicate idv() - units idv() -

2 yield ∼ Variety,
residual = ∼ idv(Column):ar1(Row)

- - - Column.Row idv() ar1()

2a yield ∼ Variety,
residual = ∼ ar1v(Column):ar1(Row)

- - - Column.Row ar1v() ar1()

2b yield ∼ Variety,
random = ∼ idv(units),
residual = ∼ ar1v(Column):ar1(Row)

units idv() - Column.Row ar1v() ar1()

3 yield ∼ Variety,
random = ∼ ar1v(Column):ar1(Row)
residual = ∼ idv(units)

Column.Row ar1v() ar1() units idv() -

4.1.1 An alternative fitting algorithm based on the gamma parameterization

In all of the RCB data models above, the residual specifies a variance model with a single variance
parameter and an alternative fitting algorithm can avoid specification of an initial residual variance
and lead to speedier convergence. This can easily be actioned by setting
asreml.options(gammaPar=TRUE) before the call to asreml(). Note that
asreml.options(gammaPar=TRUE) will set the gammaPar to TRUE for the duration of the session
unless it is reset to FALSE. Section 4.1.2 discusses various more succinct default options. Section
4.8 provides a series of simple RCB data examples in this gamma parameterization with some
alternative more implicit default specifications, and comments on the summaries.
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4.1.2 Reducing the specification using defaults

Some of the specification can be reduced by using defaults. In asreml() the scaled independent
variance structure (idv(units), R = σ2eI224 for an RCB model for the NIN data) is the default for
error. This simple error term is implicit in the model and it is not necessary to formally specify it
with the residual argument. If a term in a random variance model structure is specified without
a variance model function, the effects are assumed to be independent and identity functions and
a residual variance parameter are added to ensure the full term is a variance structure with the
variance term labelled in the output using the components of the linear model. For example, A and
id(A) become σ2e id(A) and the variance term is labelled A. The functions A:B, A:id(B) and id(A):B
all become σ2e id(A):id(B) and the function A:ar1(B) becomes σ2e id(A):ar1(B). In these 4 cases the
variance is labelled A:B. Note that in cases when the residual variance model is not specified or is
not completely specified and implies a scaled identity matrix, the gamma parameterization is used.
So

> rcb.asr <- asreml(yield ~ Variety, random = ~Replicate, data = nin89)

and

> rcb.asr <- asreml(yield ~ Variety, random = ~Replicate, residual = ~units, data = nin89)

are equivalent to

> rcb.asr <- asreml(yield ~ Variety, random = ~idv(Replicate), residual = ~id(units), data

= nin89)

and

> asreml.options(gammaPar = TRUE)

> rcb.asr <- asreml(yield ~ Variety, random = ~idv(Replicate), residual = ~idv(units), data

= nin89)

4.2 Types of variance models

Three types of variance model are used in fitting R and G structures in ASReml-R, namely, corre-
lation models, homogeneous variance models and heterogeneous variance models. These determine
the form for each component of G and R. In the following, we denote the variance matrix of any
component relating to a term in random or residual by Σ.

4.2.1 Correlation models

In correlation models all diagonal elements are identically equal to 1.Algebraically, if Σ = [ρij ] , i, j =
1 . . . ω, denotes the correlation matrix for a particular model, then

Σ = [ρij ] :

{
ρii = 1, ∀i

ρij = ρji, |ρij | ≤ 1, i 6= j.

The simplest correlation model in ASReml-R is the id() model, where Σ = Iω
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4.2.2 Homogeneous variance models

If the variance model is specified as a homogeneous variance model, the diagonal elements all have
the same positive value, σ2 say. That is,

Σ = [σij ] :

{
σii = σ2, ∀i

σij = σji, i 6= j.

Note that if Σ is a correlation model, a homogeneous variance model (with one extra parameter)
is formed as (σ2I)Σ.

For example, the homogeneous variance model corresponding to id() is idv() where Σ = σ2Iω (or
Σ = γIω).

4.2.3 Heterogeneous variance models

The third variance model is the heterogeneous variance model in which the diagonal elements are
positive but differ. That is,

Σ = [σij ] :

{
σii = σ2i , i = 1 . . . ω

σij = σji, i 6= j.

For the models defined in terms of correlation matrices, allowance for unequal variances can be
made by applying a diagonal matrix D of standard errors to the correlation matrix to generate a
heterogeneous variance model. That is D1/2ΣD1/2 In this case, ω extra parameters are added to
the vector of initial values.

For example, the heterogeneous variance model corresponding to id() is idh() where Σ = diag(σ1, . . . , σω).

4.2.4 Positive definite matrices

Formation of the mixed model equations (MME) requires the inversion of the variance matrix in
the R and G structures. We therefore normally require these matrices to be non-singular. The 2
exceptions are the fa model which has been specifically designed to fit singular matrices (Thompson
et al.; 2003) and when singular known relationship matrices are used when ASReml-R takes account
of the implied constraints in the singular relationship matrices.

4.3 Variance model functions

ASReml-R has a wide range of variance models that can be used to specify the variance matrix of
terms in the random and residual formulae. The following considers the various models in terms of
functional groups and describes their syntax and application.

In general, the correlation models described in the following sections have corresponding variance
models whose names are simply derived by appending ”v” or ”h” to the correlation function name.
In the former case this yields a homogeneous variance model while the latter gives the corresponding
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heterogeneous model. For example, for the simple correlation model cor(), there also exists the
variance functions corv() and corh(). The existence or otherwise of such models is noted for each
functional group in the section detailing initial model parameter values.

4.3.1 Default identity

id(obj)
idv(obj, init=NA)
idh(obj, init=NA)

Required arguments

obj a factor in the data frame.

Optional arguments

init a vector of initial parameter values. This vector can have an optional names attribute to
set the boundary constraint for each parameter. In this case, the name of each element
may be one of ”P”, ”U” or ”F” for positive, unconstrained or fixed, respectively.

model number of parameters
f form: f() fv() fh()

id 0 1 n

Details

ASReml-R uses the id() correlation model or the idv() simple variance component model, depending
on context (see the rules for combining variance models in Section 4.5) for terms in the random or
residual formulae that have no variance model explicitly specified.

4.3.2 Time series type models

ar1(obj, init=NA)
ar2(obj, init=NA)
ar3(obj, init=NA)
sar(obj, init=NA)
sar2(obj, init=NA)
ma1(obj, init=NA)
ma2(obj, init=NA)
arma(obj, init=NA)

Description

Includes autoregressive models of order 1, 2 and 3 (ar1, ar2 and ar3), symmetric autoregressive
(sar), constrained autoregressive order 3 (sar2), moving average models of order 1 and 2 (ma1, ma2)
and the autoregressive-moving average model (arma).

Required arguments

obj a factor in the data frame.
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Optional arguments

init a vector of initial parameter values. This vector can have an optional names attribute to
set the boundary constraint for each parameter. In this case, the name of each element
may be one of ”P”, ”U” or ”F” for positive, unconstrained or fixed, respectively.

model number of parameters
(f) form: f() fv() fh()

ar1 1 2 1 + n
ar2 2 3 2 + n
ar3 3 4 3 + n
sar 1 2 1 + n
sar2 2 3 2 + n
ma1 1 2 1 + n
ma2 2 3 2 + n
arma 2 3 2 + n

4.3.3 Metric based models in < or <2

exp(x, init=NA, dist=NA)
gau(x, init=NA, dist=NA)
lvr(x, init=NA, dist=NA)
iexp(x, y, init=NA)
igau(x, y, init=NA)
ieuc(x, y, init=NA)
sph(x, y, init=NA)
cir(x, y, init=NA)
aexp(x, y, init=NA)
agau(x, y, init=NA)
mtrn(x, y, phi=NA, nu=0.5, delta=1.0, alpha=0.0, lambda=2)

Description

Includes one dimensional exponential and gaussian power models (exp, gau), two dimensional
isotropic exponential, gaussian, euclidean, spherical and circular power models (iexp, igau, ieuc,
sph, cir), anisotropic exponential and gaussian models (aexp, agau) and the Matérn class (mtrn).

Required arguments

x a field in the data frame containing the x coordinates. For one dimensional models,
coordinates are obtained as unique(x) or, if specified, from the component named x in the
pwr.points argument to asreml().

.

y a field in the data frame containing the y coordinates.

Optional arguments

dist for one dimensional models, a vector of coordinates; an alternative way to specify distance
information for x.
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init a vector of initial parameter values. This vector can have an optional names attribute to
set the boundary constraint for each parameter. In this case, the name of each element
may be one of ”P”, ”U” or ”F” for positive, unconstrained or fixed, respectively.

model number of parameters
(f) form: f() fv() fh()

exp 1 2 1 + n
gau 1 2 1 + n
lvr 1 2 1 + n
iexp 1 2 1 + n
igau 1 2 1 + n
ieuc 1 2 1 + n
sph 1 2 1 + n
cir 1 2 1 + n
aexp 2 3 2 + n
agau 2 3 2 + n

phi the range parameter. Default: φ = NA.
nu the smoothness parameter. Default: ν = 0.5.
delta governs geometric anisotropy. Default: δ = 1.0.
alpha governs geometric anisotropy. Default: α = 0.0.
lambda specifies the choice of metric. Default: λ = 2 for Euclidean distance.

For the Matérn function, if an argument is numeric, it is treated as a starting value for
estimation and given the constraint code P (positive). This behaviour can be altered
by concatenating the numeric value followed by the constraint code (P, U or F) into a
character string. If an argument is absent from the call, the corresponding parameter is
held fixed at its default value.

Details

Kriging models apply to points in an irregular (or regular) spatial grid. They require the specifi-
cation of the data coordinates to calculate pairwise distances. For example,

• the distance between time points in a one-dimensional longitudinal analysis

• the spatial distance between plot coordinates in a two-dimensional field trial analysis.

Distance information for power models is obtained from the object(s) or arguments passed to the
relevant special function.

For one-dimensional models, the distances are obtained from one of:

1. unique(x) where x is the required argument to the model function identifying the field in the
data frame containing the points.

2. the dist argument to the model function.

3. the pwr.points list argument to asreml().
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For two-dimensional models, the special functions require two arguments nominating fields in the
data frame specifying the (x, y) coordinates of each observation. For example, in the analysis of
spatial data, if the x coordinate was in a variate row and the y coordinate was in a variate labelled
column, an anisotropic exponential model could be fitted by aexp(row, column).

Note that for an R structure the data order is assumed correct, for example, the data must be
ordered rows within ranges for a separable autoregressive spatial model of order 1 specified as
ar1(Range):ar1(Row), otherwise an error is generated.

The Matérn class

ASReml-R uses an extended Matérn class which accommodates geometric anisotropy and a choice
of metrics for random fields observed in two dimensions. This extension, described in detail in
Haskard (2006), is given by

ρ(h;φ) = ρM (d(h; δ, α, λ);φ, ν)

where h = (hx, hy)
T is the spatial separation vector, (δ, α) governs geometric anisotropy, (λ)

specifies the choice of metric and (φ, ν) are the parameters of the Matérn correlation function. The
function is

ρM (d;φ, ν) =
{

2ν−1Γ(ν)
}−1(d

φ

)ν
Kν

(
d

φ

)
, (4.1)

where φ > 0 is a range parameter, ν > 0 is a smoothness parameter, Γ(·) is the gamma function,
Kν(.) is the modified Bessel function of the third kind of order ν (Abramowitz and Stegun, 1965,
section 9.6) and d is the distance defined in terms of X and Y axes: hx = xi − xj ; hy = yi − yj ;
sx = cos(α)hx + sin(α)hy; sy = cos(α)hx − sin(α)hy; d = (δ|sx|λ + |sy|λ/δ)1/λ.

For a given ν, the range parameter φ affects the rate of decay of ρ(·) with increasing d. The
parameter ν > 0 controls the analytic smoothness of the underlying process us, the process being
dνe − 1 times mean-square differentiable, where dνe is the smallest integer greater than or equal
to ν (Stein, 1999, page 31). Larger ν correspond to smoother processes. ASReml-R uses numerical
derivatives for ν when its current value is outside the interval [0.2,5].

When ν = m+ 1
2 with m a non-negative integer, ρM (·) is the product of exp(−d/φ) and a polynomial

of degree m in d. Thus ν = 1
2 yields the exponential correlation function, ρM (d;φ, 12) = exp(−d/φ),

and ν = 1 yields Whittle’s elementary correlation function, ρM (d;φ, 1) = (d/φ)K1(d/φ) (Webster
and Oliver, 2001).

When ν = 1.5 then
ρM (d;φ, 1.5) = exp(−d/φ)(1 + d/φ)

which is the correlation function of a random field which is continuous and once differentiable.
This has been used recently by Kammann and Wand (2003). As ν → ∞ then ρM (·) tends to the
gaussian correlation function.

The metric parameter λ is not estimated by ASReml-R; it is usually set to 2 for Euclidean distance.
Setting λ = 1 provides the cityblock metric, which together with ν = 0.5 models a separable
AR1×AR1 process. Cityblock metric may be appropriate when the dominant spatial processes
are aligned with rows/columns as occurs in field experiments. Geometric anisotropy is discussed
in most geostatistical books (Webster and Oliver; 2001; Diggle et al.; 2003) but rarely are the
anisotropy angle or ratio estimated from the data. Similarly the smoothness parameter ν is often
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set a-priori (Kammann and Wand; 2003; Diggle et al.; 2003). However Stein (1999) and Haskard
et al. (2007) demonstrate that ν can be reliably estimated even for modest sized data-sets, subject
to caveats regarding the sampling design.

Estimation

The order of the parameters in mtrn(), with their defaults, is (φ, ν = 0.5, δ = 1, α = 0, λ =
2). Parameters are fixed or estimated depending on the data type (numeric or character) of the
argument to the respective parameter.

• If an argument is numeric, it is treated as a starting value for estimation and given the constraint
code P (positive).

• This behaviour can be altered by concatenating the numeric value followed by the constraint
code (P, U or F) into a character string.

• If an argument is absent from the call, the corresponding parameter is held fixed at its default
value.

For example, to fit a Matérn model with only φ estimated and the other parameters set at their
defaults then we could use mtrn(phi = 0.1) where the starting value for estimation is given as 0.1.

To fix ν some value other than the default and estimate φ, the fixed value and constraint code are
given as a single string to the nu argument. That is mtrn(phi = 0.1, nu = ”1.0F”)

The parameters φ and ν are highly correlated so it may be better to manually cover a grid of ν
values.

We note that there is non-uniqueness in the anisotropy parameters of this metric d(·) since inverting
δ and adding π

2 to α gives the same distance. This non-uniqueness can be removed by constraining
0 ≤ α < π

2 and δ > 0, or by constraining 0 ≤ α < π and either 0 < δ ≤ 1 or δ ≥ 1. With λ = 2,
isotropy occurs when δ = 1, and then the rotation angle α is irrelevant: correlation contours are
circles, compared with ellipses in general. With λ = 1, correlation contours are diamonds.

4.3.4 General structure models

cor(obj, init=NA)
corb(obj, k=1, init=NA)
corg(obj, init=NA)
diag(obj, init=NA)
us(obj, init=NA)
chol(obj, k=1, init=NA)
cholc(obj, k=1, init=NA)
ante(obj, k=1, init=NA)
sfa(obj, k=1, init=NA)
fa(obj, k=1, init=NA)
facv(obj, k=1, init=NA)
rr(obj, k=1, init=NA)

Description
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The class of general variance models includes the simple, banded and general correlation models
(cor, corb, corg), the diagonal, unstructured, Cholesky and antedependence variance models (diag,
us, chol, cholc, ante) and the factor analytic structure (fa).

Required arguments

obj a factor in the data frame.

Optional arguments

init a vector of initial parameter values. This vector can have an optional names attribute to
set the boundary constraint for each parameter. In this case, the name of each element
may be one of ”P”, ”U” or ”F” for positive, unconstrained or fixed, respectively.

model number of parameters
(f) form: f() fv() fh()

cor 1 2 1 + n
corb k k + 1 k + n
corg n(n− 1)/2 1 + n(n− 1)/2 n+ n(n− 1)/2
diag n
us n(n+ 1)/2
chol1 n(n+ 1)/2
cholc1 n(n+ 1)/2
ante1 n(n+ 1)/2
sfa kn+ n
fa kn+ n
facv kn+ n
rr kn

1 chol, cholc and ante models have (k+1)(n−k/2) parameters but n(n+1)/2 initial values row-wise from

the lower triangle of an unstructured matrix are given and converted to the appropriate parameterization.

k the number of subdiagonal bands for corb
the order of the Cholesky decomposition for chol and cholc
the order of antedependence (ante) and factor analytic models (fa).

Details

The k-factor Cholesky structure models Σω×ω as

Σ = LDL′

where Lω×ω is a unit lower triangular matrix and D = diag(d1, . . . , dω).

In the chol(,k) factorization L has k non-zero (unequal) bands below the diagonal, that is, the
elements {lij} of L are

lii = 1

lij = vij . 1 ≤ i− j ≤ k
lij = 0, otherwise
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In the cholc(,k) factorization L has columns li = (l1i, . . . , lωi)
′ where

lii = 1

lij = 0 for i < j, k < j < i

For example, if a factor Site has 4 levels then

asreml(...,cholc(Site,1)...)

generates Σ = LDL′ where

L =


1
l21 1
l31 0 1
l41 0 0 1

 D =


d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4


This form is similar to a Factor Analytic model. In ASReml-R the initial parameters for both
Cholesky factorizations are given as the lower triangle row-wise of an unstructured matrix and
converted internally to the appropriate factorization. So, if

Σ =


σ11

σ21 σ22

σ31 σ32 σ33

σ41 σ42 σ43 σ44


the initial values are given as

c(σ11, σ21, σ22, . . . , σ44)

The k-factor antedependence ante(,k) structure models Σω×ω as

Σ−1 = UDU ′

where Uω×ω is a unit upper triangular matrix with elements {uij} where

uii = 1

uij = 0, i > j

uij = uij , 1 ≤ i− j ≤ k

and D = diag(d1, . . . , dω).

Considering the above example for a factor Site with 4 levels,

asreml(...,ante(Site,1)...)

generates Σ−1 = UDU ′ where

U =


1 u12 0 0
0 1 u23 0
0 0 1 u34
0 0 0 1

 D =


d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4


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In ASReml-R the parameters for ante are given as for us, chol and cholc as the lower triangle row-wise
of an unstructured matrix.

The functions facv(), fa() and sfa() are different parameterizations of the factor analytic model. In
the first two for models of order k (facv(, k) and fa(k)) the variance matrix Σω×ω is modelled as

Σ = ΓΓ′ + Ψ

where Γ (ω×k) is a matrix of loadings and Ψω×ω is a diagonal matrix whose elements are referred to
as specific variances. As the covariances are modelled by the loadings, cv is included in the function
name.

For example, if Site is a factor with 4 levels, the component matrices for asreml(. . . ,facv(Site,1). . . )

are

Γ =


l1
l2
l3
l4

 Ψ =


ψ1 0 0 0
0 ψ2 0 0
0 0 ψ3 0
0 0 0 ψ4


where the parameters are given in the order c(vec(Γ),diagv(Ψ)), where diagv() is the operator that
puts the diagonal terms of a square matrix into a vector.

Alternatively the variance-covariance matrix Σω×ω can be scaled in sfa(,k) using a correlation
scale with Σ = DCD, where Dω×ω is diagonal such that DD = diag (Σ) ie. a diagonal matrix
with diagonal elements the diagonal elements of Σ, and Cω×ω is a correlation matrix of the form
FF

ᵀ
+ E, where F is a matrix of loadings on the correlation scale and E is diagonal and is

defined by difference. Comparison of Σ under the two parameterization show that DF = Γ and
DED = Ψ. The parameters for the sfa(,k) model are specified in the order the loadings for each
factor (F ) followed by the variances (the diagonal elements of Σ orDD). Note that the parameters
for the facv(,k) model are ordered as for the sfa(,k) model.

The third form of the factor analytic model is fa(,k) and has the same parameterisation as for
facv(,k). The difference is that this model introduces the k factor effects directly into an extended
linear model and in the estimation procedure. This formulation is computationally faster than the
facv(, k) and sfa(, k) formulations for large problems when k is much smaller than ω, and permits
some elements of Ψ to be fixed as zero. It also allows easier specification for prediction of factor
effects. Slightly confusingly, but in the interests of upward compatibility, with fa(,k) the parameters
are ordered in the reverse order, c(diagv(Ψ), vec(Γ)).

4.3.4.1 Limitations

The functions fa(,k) and sfa(,k), unlike facv(,k), do not allow singular Σ matrices to be estimated.
Constraints are required in Γ for k > 1 for identifiability. These are automatically set unless the
user ensures identifiability by constraining one parameter in the second column, two in the third
column, etc. With rotate.fa=FALSE (the default), ASReml-R fixes the j = 1, ..., i − 1 loadings for
the i-th factor (2 ≤ i ≤ k) to zero and their corresponding boundary constraints to F. The total
number of constraints is k(k − 1)/2.

An alternative set of constraints can be set if identifiability constraints have not been imposed,
using rotate.fa=TRUE. The factors are rotated to orthogonality, in each iteration, and k(k − 1)/2
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constraints are imposed on the loadings depending on the values in this orthogonalized Γ. This
option is hypothesized to have better convergence properties but we do not have sufficient evidence
yet to make a definite recommendation on its use. We note that extra constraints might be needed to
ensure identifiability if the number of parameters in a k factor analytic model, ω(1+k)−k(k−1)/2,
is greater than the ω(ω + 1)/2 parameters that can be estimated in Σ.

Unfortunately because the fa(,k) formulation allows singular variance matrices it is not available in
residual (R) structures.

4.3.4.2 Updating loadings in factor analytic models

The algorithm for updating loadings in factor analytic models has been improved. The motivation
for change was that the original update procedure sometimes produced unreasonable updates, or
otherwise came near to convergence and then drifted away. The present procedure is to modify
the average information matrix by increasing the diagonal elements pertaining to loadings by a
percentage, p. The default is to start with p = 10% and reduce it by 1 or 2% each iteration down
to 1%. If the starting values are poor, 10% may not be a sufficient initial retardation. If it appears
the updates are unreasonable, ASReml-R will increase the value of p by 10% and then continue.
The user can set the initial value of p with the option ai.penalty=p. After the penalty has reduced
to 1%, it is further reduced to 0.2%. The qualifier can be used to set p to 0 if desired. Another
option, ai.loadings, allows further control of the AI updates of loadings in extended factor-analytic
(fa(,k)) models. After ASReml-R calculates updates for variance parameters, it checks whether the
updates are reasonable and sometimes reduces them over and above any step.size shrinkage. The
extra shrinkage has two levels. Loadings that change sign are restricted to doubling in magnitude,
and if the average change in magnitude of loadings is greater than 10-fold, they are all shrunk.
Further, when ai.loadings=n is specified (default n = −1 specifies no action) and the user has not
imposed identifiability constraints, then ASReml-R imposes them using ai.rotate=TRUE and it also
prevents AI updates of some loadings during the first n iterations. For k > 1 factors, only the
last factor is estimated (conditional on the earlier ones) in the first k − 1 iterations. Then pairs,
including the last, are estimated until iteration n.

4.3.5 Special case of fa(): rr()

In a reduced rank factor analytic model of order k (rr(,k)), the variance matrix Σω×ω is modelled
as

Σ = ΓΓ′

where Γ (ω×k) is a matrix of loadings.

For example, if Site is a factor with 4 levels, the component matrix for asreml(. . . ,rr(Site,1). . . ) is
simply

Γ =


l1
l2
l3
l4

 .

Note that for computational reasons there can only be one rr() term in a compound model term,
and it is recommended that the rr() term is the first term. In a 3-way structure with an rr() term,
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if a relationship structure (specified using vm() in ASReml-R Version 4) is used then it should be
the third term and only an identity term can be used for the second term.

Note also that the summary() function currently returns zeros for the set of specific variances and
they also appear in the table of variance parameters using start.values = TRUE. The user needs to
be aware of this and to extract them as necessary when post-processing.

4.3.6 Known relationship structures

vm(obj, source, singG=NULL)

ide(obj, source)

Arguments

obj a factor in the data frame.

source The known inverse or relationship matrix:

• a sparse inverse variance matrix held in three column co-ordinate form in row major
order. This triplet matrix must have class ginv from a call to ainverse(), or have
attribute INVERSE set to TRUE. For backwards compatibility, a three column data
frame is also accepted. In either case, the source must have a rowNames attribute.

• a sparse relationship matrix held in three column co-ordinate form (as a matrix) in row
major order. If the attribute INVERSE is not set then FALSE is assumed; a rowNames
attribute must be set.

• a matrix (or Matrix object) with a dimnames attribute giving the levels of the model
term being defined. This may be a relationship matrix or its inverse; if an inverse, it
must have an attribute INVERSE set to TRUE.

• a numeric vector of the lower triangular elements in row major order. The vector must
have a rowNames attribute, and if an inverse structure, it must also have an INVERSE
attribute set to TRUE.

singG This argument is ignored if source has class ginv or its INVERSE attribute is TRUE; in
such cases source must be one of:

• a sparse matrix in coordinate form with class ginv, or INVERSE attribute set to TRUE.

• an object of class matrix or Matrix with INVERSE attribute set to TRUE.

• a vector assumed to be the lower triangle in row major order with INVERSE attribute
set to TRUE.

If source does not have class ginv, or the attribute INVERSE is FALSE or is not set, and singG is
NULL (the default), then source is assumed to be a positive definite relationship matrix and singG is
reset to ”PD”. Otherwise, a character string giving the state of the (to be inverted) source object:

PD source is positive definite (default).

ND source is non-singular indefinite (positive and negative roots). ASReml-R ignores the indefinite
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condition and proceeds.

PSD source is positive semi-definite. In this case, ASReml-R proceeds using Lagrangian multipliers
to process the matrix. Two cases arise: whether the singularity arises because of an effect has zero
variance or whether it arises as a linear dependence. An example of the first is when the GRM
represents a dominance matrix, and the list of genotypes includes fully inbred individuals which
by definition have no dominance. An example of the second is when the list of genotypes includes
clones.

NSD source is singular indefinite (positive, zero and negative roots). The indefinite condition is
ignored and ASReml-R proceeds using Lagrangian multipliers as for PSD matrices.

Details

If source inherits from class Matrix, ASReml-R will convert source internally to either sparse triplet
form (class dsparseMatrix), or dense vector form (class ddenseMatrix) for processing. The names
of the levels of vm() are given by the rowNames attribute associated with source. The number of
levels of vm(obj, source) might be greater than the levels of obj in the data frame. ide(obj, source)
creates a term with the levels associated with source, and modelled by the homogeneous form of
the identity variance structure. If an ide() term succeeds its partner vm() term then source can be
omitted from ide() and ASReml-R uses the source from the partner vm().

Warning: If a model term is specified in terms of vm() and other model terms then, at present, the
other model terms must specify a variance, as opposed to correlation, matrix.

4.3.6.1 Linking a relationship matrix to regressor variables

One use of a relationship matrix is to allow more computationally efficient fitting of random re-
gression models associating a vector u of p factor effects with a vector v of m regression effects
through the model u = Mv, where the p ×m matrix M contains m regressor variables for each
of the p levels of the factor. If m � p, it is more computationally efficient to fit the model with
Zu (Z is the design matrix linking observations to factor levels) and a variance structure for u
based on K = MM ′, than a model fitting the regressor effects directly. A common case of such a
situation is in genomic studies when u represents genotype effects and M is the p ×m matrix of
genetic marker scores.

The matrix K is constructed externally to asreml and used in the analysis with the vm() model
function. K must have a dimnames attribute giving the levels of the model term defined in vm().
The marker (or regressor) effects can be obtained from the meff.asreml() method. For example:

K <- M %*% t(M)

nassau.asr <- asreml(ht6 ~ CultureID/Rep, random = ~vm(clonefv, K) + ide(clonefv) +

Rep:IncBlock, ...)

nassau.mef <- meff(nassau.asr, mef = list(K = "M"), effects = ~vm(clonefv, K))

fits such a model and estimates the marker effects given that the matrix K is in the R object K and
the original p ×m matrix of marker scores is in the R object M. The reason for quoting the name
”M” is so that when R is passing the arguments through to the meff function it will not evaluate
the object (which is typically large), as this will cause issues with memory and speed.
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4.3 Variance model functions

The meff() method is not to be confused with the mef argument to asreml() that accepts the return
value of the meff method.

4.3.7 General variance structures

str(form, vmodel)

Required arguments

form a model formula specifying a set of terms to be included in the random argument that
collectively will have an associated variance model.

vmodel a formula object containing asreml variance functions separated by ”:” operators speci-
fying the direct product structure that applies to the set of terms in form. The size of
the variance structures can be given as an integer argument to the variance functions in
place of the usual factor object.

Details

Typically a variance structure applies to an individual term in the linear model, with no covariance
between model terms. Sometimes it is appropriate, for example in random regression models, to
include a covariance parameter. The model terms in form are kept together and identified by the
first term in the sequence. The variance structure defined in vmodel begins at the first term and
covers the subsequent terms in the sequence. The overall size of the variance model is checked
against the total number of levels of the terms in form, however, the sequence of effects matching
the variance structure definition is not checked.

For example, in the first order random coefficient regression model it is required to specify a
covariance between the intercept and slope for each subject to ensure translation invariance, that
is, equivalent variance parameter estimates for addition of any constant to the independent variable.
For example, in a random coefficient regression where a set of random intercepts is specified by
the model term Animal (with 10 levels) and a set of random slopes is specified by the model term
age.Animal, translation invariance is achieved using str() as

str(Animal + age.Animal, us(2):id(10))

The algorithm places the model terms specified using the argument form together in the processed
random model, here Animal followed by age.Animal. The variance structure(s) begins at the start
of the first term specified in str() and is expected to exactly span the whole set of terms given
within the brackets. The overall size of the variance model is checked against the total number of
levels of these terms, but the user must verify that the ordering is appropriate for (matches) the
variance model specified.

In our example, this random model generates a combined set of random effects from the individual
animal intercepts, uI = (uI1 . . . uI10)

ᵀ and animal slopes, uS = (uS1 . . . uS10)
ᵀ, as uIS = (uᵀ

I u
ᵀ
S)ᵀ.

This term then has variance structure of the form

var (uIS) = var

([
uI
uS

])
=

[
σII σIS
σIS σSS

]
⊗ I10 =

[
σIII10 σISI10
σISI10 σSSI10

]
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4.4 Default initial values for variance parameters

Here, the set of animal intercepts has a common variance (σII), and the set of animal slopes
has a (different) common variance (σSS). Intercepts and/or slopes from two different animals are
independent, but the intercept and slope from any given animal have covariance σIS (or correlation
σIS/

√
σIIσSS). In this context, we use integers as arguments to emphasize that the arguments

are specifying the size of the variance structure. For this example, id(10) can be replaced by
id(Animal). This random regression model has been developed to describe the form of the str()
function. We note that this model is equivalent to

us(pol(age)).id(Animal)

Note that model terms with variance functions such as fa(), rr(), vm() and ide() that generate new
model factors with a modified set of levels must be given explicitly in the form argument. This
ensures that the overall sizes (in terms of the total numbers of levels) of form and vmodel conform
and ensures the correct identification of terms in the model, especially in predict statements.

An example is from the use of reduced animal models with the need to form a composite design
matrix as the sum of half a sire and half a dam matrix. We first set up in the data frame a variate
with values 0.5.

data.df$half <- rep(0.5, nrow(data.df))

and then form a design matrix from sires (P.Male) and dams (P.Female) scaled by a factor 0.5
using the variate half:

str(~fa(YrLoc, 1):vm(P.Male, Ainv):half + and(fa(YrLoc, 1):vm(P.Female, Ainv):half),

~fa(YrLoc, 1):vm(P.Male, Ainv))

Note that the YrLoc effects are extended by 1 to include the one extra factor in fa(,1), and the
levels associated with P.Male and P.Female are extended to include all levels in Ainv. We note in
passing that the functionality of and() allows

and(fa(YrLoc, 1):vm(P.Female, Ainv):half)

to be written in the alternative form

and(fa(YrLoc, 1):vm(P.Female, Ainv), 0.5)

4.4 Default initial values for variance parameters

The default initial values are 0.1 for both variance ratios and correlations, and 0.1*v for variance
components, where v is half the simple variance of the response. The corresponding default param-
eter constraints are P (positive) for variance ratios, U (unconstrained) for correlations and P for
variance components. These defaults can be altered using the methods described in Section 3.7.1.
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4.6 Constraining variance parameters

4.5 Rules for combining variance models

Variance structures are sometimes formed by combining variance models. For example, a two factor
interaction may involve two variance models, one for each of the two factors in the interaction. Some
of the rules for combining variance models differ for R structures and G structures. The following
rules apply:

• when combining variance models in both R and G structures, the resulting direct product struc-
ture must match the ordered effects with the outer factor first. For example, the NIN data are
ordered rows within columns. This is why in Model 3 (page 47) the ar1v() variance model for
Column is specified first in the interaction term.

• ASReml-R automatically includes and estimates an error variance parameter for each section of
an R structure that is a correlation matrix.

• when the G structure involves more than one variance model, one must be either an homogeneous
or a heterogeneous variance model and the rest should be correlation models; if more than one
are non-correlation models then constraints should be used to avoid identifiability problems, that
is, to prevent attempts to estimate confounded parameters.

4.6 Constraining variance parameters

4.6.1 The vcc argument to asreml()

vcc is the argument to asreml() that allows users the functionality of the vcm argument in Version
3.

Equality and multiplicative relationships among variance parameters are defined by supplying a
two-column numeric matrix with a dimnames attribute to vcc. The first column defines the group-
ing of variance parameters by assigning the same number to each parameter within a group, and the
second column contains the scaling coefficients. The dimnames()[[1]] attribute must match the
component names in the asreml parameter vector (see start.values). The parameters in a group
are scaled relative to the first parameter in that group so that the scaling of the first parameter in
each group is one.

For example, consider a MET with two trials with separate error variances (σ21 and σ22) and the
spatial row (ρr1 and ρr2) and column (ρc1 and ρc2) parameters for a separable autoregressive spatial
model of order 1 for each trial. Say we wish to constrain these error models to be equal so that
σ21 = σ22, ρr1 = ρr2 and ρc1 = ρc2 . Then the appropriate vcc matrix with row attributes is

Trial 1!R

Trial 1!Row!cor

Trial 1!Column!cor

Trial 2!R

Trial 2!Row!cor

Trial 2!Column!cor



1 1
2 1
3 1
1 1
2 1
3 1


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4.6 Constraining variance parameters

Alternatively, if we require σ22 = 2σ21, the vcc matrix is

Trial 1!R

Trial 1!Row!cor

Trial 1!Column!cor

Trial 2!R

Trial 2!Row!cor

Trial 2!Column!cor



1 1
2 1
3 1
1 2
2 1
3 1



4.6.2 The vcm argument to asreml()

The vcm argument to asreml() allows the user to define equality and multiplicative relationships
among variance parameters. The default NULL means no relationship is fitted.

The user may wish to define relationships between particular variance parameters. For example,
consider an experiment in which two or more separate trials are sown adjacent to one another at
the same trial site, with trials sharing a common plot boundary. In this case it might be sensible
to fit the same spatial parameters and error variances for each trial. In other situations it can
be sensible to define the same variance structure over several model terms. ASReml-R Version 3
catered for equality and multiplicative relationships among variance parameters (this facility is
available in Version 4 through vcc, see above). In ASReml-R Version 4 linear relationships among
variance structure parameters can be defined through a simple linear model and by supplying a
design matrix for a set of parameters.

Let κ be the r-vector of original variance parameters (for either the sigma or gamma parameteri-
sation) from which we wish to specify linear relationships of the form

κ = Mκn

where κn is the c-vector of parameters in the new set. In the simple case where the r parame-
ters are constrained to be equal, c = 1, the r original parameters are all equal to the one new
parameter and M will contain a column of ones. Consider again the MET with two trials in which
we wish to constrain the trial error variances and the spatial row and column parameters for a
separable autoregressive spatial model of order 1 for each trial, to be equal. In this case the re-
lationship between the original and new parameter sets is κ = Mκn where κ is the 6 × 1 vector
[σ2

1
, ρr1 , ρc1 , σ

2
2
, ρr2 , ρc2 ]ᵀ, κn is a 3 × 1 vector [σ2e , ρr, ρc]

ᵀ and M , with row attributes, is the
6× 3 matrix

Trial 1!R

Trial 1!Row!cor

Trial 1!Column!cor

Trial 2!R

Trial 2!Row!cor

Trial 2!Column!cor



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1



Generating M

A default data frame vparameters.table is generated by setting the start.values argument to TRUE
in the call to asreml(). This data frame contains elements Component which contains the names

64



4.6 Constraining variance parameters

of the variance parameters, Value which contains the default initial values and Constraint which
contains the default constraint code. The Component element can be used to generate M .

By way of example, consider a model containing a first order interaction term (A : B, say) where
the outer factor (A) is of order 7 and we wish to model it with an unstructured variance matrix
with some parameters constrained. If the constraints are
vr,c = v3,c (r = 4, 5, 6, 7; c = 1, 2), vr,r = v3,3 (r = 4, 5, 6, 7) and vr,c = v4,3 = 0 (r = 5, 6, 7; c =
3, 4, 5, 6; r > c), this gives rise to a vector of 7 parameters κn = (v1,1, v2,1, v2,2, v3,1, v3,2, v3,3, v4,2)

ᵀ

and a variance matrix:

v1,1
v2,1 v2,2
v3,1 v3,2 v3,3
v3,1 v3,2 v4,3 v3,3
v3,1 v3,2 v4,3 v4,3 v3,3
v3,1 v3,2 v4,3 v4,3 v4,3 v3,3
v3,1 v3,2 v4,3 v4,3 v4,3 v4,3 v3,3

That is, there are only 7 distinct parameters from the original 28 and one of these is to be fixed at
zero. Furthermore, suppose that none of the remaining variance parameters from other terms in
the model are to be subject to any constraints.

The following call

> model.gam <- asreml(..., random = us(A):id(B), start.values = T, ...)

generates a data frame component of model.gam named vparameters.table, as described above.

If the 28 components of interest are the 47th to the 74th, the following code subsets
model.gam$vparameters.table and creates a factor in the reduced table that can be used to construct
M :

gam <- model.gam$vparameters.table[47:74,]

gam$fac <- factor(c(

1,

2,3,

4,5,6,

4,5,7,6,

4,5,7,7,6,

4,5,7,7,7,6,

4,5,7,7,7,7,6))

M <- model.matrix(~-1 + fac, data=gam)

dimnames(M)[[1]] <- row.names(model.gam$vparameters.table)[47:74]

attr(M,'assign') <- NULL; attr(M,'contrasts') <- NULL

Important M must have a dimnames attribute with the names of the original set of parameters as
its row names.

In this example, M would look like
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4.6 Constraining variance parameters

parameter attribute κn 1 2 3 4 5 6 7

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

A:B!B 1!1

A:B!B 2!1

A:B!B 2!2

A:B!B 3!1

A:B!B 3!2

A:B!B 3!3

A:B!B 4!1

A:B!B 4!2

A:B!B 4!3

A:B!B 4!4

A:B!B 5!1

A:B!B 5!2

A:B!B 5!3

A:B!B 5!4

A:B!B 5!5

A:B!B 6!1

A:B!B 6!2

A:B!B 6!3

A:B!B 6!4

A:B!B 6!5

A:B!B 6!6

A:B!B 7!1

A:B!B 7!2

A:B!B 7!3

A:B!B 7!4

A:B!B 7!5

A:B!B 7!6

A:B!B 7!7

v1,1
v2,1
v2,2
v3,1
v3,2
v3,3
v4,3



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0


The final step before fitting the model is to fix the parameters corresponding to level 7 of fac to
zero. This is achieved by by setting the appropriate values in the Value field of gam to zero and
the corresponding boundary constraint codes in the Constraint field to F. During the estimation
procedure the new parameters, κn, use the numbering system of the original parameters, κ, hence
the 7 κn parameters are numbered from 47-53. So to fix v4,3, parameter 53 is fixed. The modi-
fied values and the matrixM are used through the G.param and vcm() arguments to asreml(), that is

model.asr <- asreml(..., random = us(A):id(B), vcm(M), G.param = gam, ...)

This example has been set up to show how vcm() can be used. An equivalent method in this case
would be to fix the 10 parameters vr,c (r = 4, 5, 6, 7; c = 3, 4, 5, 6; numbers 55, 59, 60, 64, 65,
66, 70, 71, 72, 73) and set up a 15 × 3 matrix based on parameters vr,c (r = 3, 4, 5, 6, 7; c = 1, 2;
numbers 50, 51, 53, 54, 57, 58, 62, 63, 68, 69) and vr,r (r = 3, 4, 5, 6, 7; numbers 52, 56, 61, 67, 74)
in terms of v3,1, v3,2 and v3,3.

Warning: Beta-testing of Version 4 has indicated that if the modelled parameters κ = Mκn need to
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be restrained, the variance parameters are not at their optimum values. Please ask VSN International
for further details on how to overcome this challenge.

4.7 Functions of variance components and their approximate standard
errors

Functions of variance components and their standard errors can be obtained from the vpredict()
function. As the variance parameter names can sometimes be long or unwieldy, the variance
parameters are represented in vpredict() by the strings "V1","V2",. . . in the order in which they
appear in the vparameters component of the asreml object. For example:

> coop <- asreml.read.table("../examples/coop.dat", header = TRUE)

> head(coop)

tag Sire Dam Grp Sex Brr Litter age wwt ywt gfw fdm fat

1 500001 1 1 18 2 2 2737 31 37.0 48.0 3.2 NA NA

2 500002 1 2 18 2 3 2738 40 28.5 42.5 2.7 NA NA

3 500003 1 2 18 1 3 2738 40 30.0 49.0 2.5 NA NA

4 500004 1 3 18 1 2 2739 46 44.0 53.5 3.0 NA NA

5 500005 1 4 18 1 1 2740 54 43.0 59.5 2.5 NA NA

6 500006 1 5 18 1 1 2741 34 39.5 52.5 3.5 NA NA

> ywt0.sv <- asreml(cbind(ywt, fat) ~ trait + trait:age + trait:con(Brr) + trait:Sex +

trait:Sex:age, random = ~us(trait):id(Sire), sparse = ~trait:Grp, residual =

~id(units):us(trait), data = coop, start.values = TRUE)

>

> ywt0.sv <- ywt0.sv$vparameters.table

> ywt0.sv[, "Value"] <- c(1.4, 0.13, 0.03, 1, 23, 2.5, 1.6)

> ywt0.sv

Component Value Constraint

1 trait:Sire!trait_ywt:ywt 1.40 P

2 trait:Sire!trait_fat:ywt 0.13 P

3 trait:Sire!trait_fat:fat 0.03 P

4 units:trait!R 1.00 F

5 units:trait!trait_ywt:ywt 23.00 P

6 units:trait!trait_fat:ywt 2.50 P

7 units:trait!trait_fat:fat 1.60 P

> ywt.asr <- asreml(cbind(ywt, fat) ~ trait + trait:age + trait:con(Brr) + trait:Sex +

trait:Sex:age, random = ~us(trait):id(Sire), sparse = ~trait:Grp, residual =

~id(units):us(trait), data = coop, G.param = ywt0.sv, R.param = ywt0.sv)

Model fitted using the sigma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:17 2019

LogLik Sigma2 DF wall cpu

1 -9991.549 1.0 6164 23:23:17 0.0

2 -9990.785 1.0 6164 23:23:17 0.0
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3 -9990.226 1.0 6164 23:23:17 0.0

4 -9990.084 1.0 6164 23:23:17 0.0

5 -9990.084 1.0 6164 23:23:17 0.0

Terms with zero df listed in attribute ’zerodf’ of the wald table.

> ywt.asr$vparameters

trait:Sire!trait_ywt:ywt trait:Sire!trait_fat:ywt trait:Sire!trait_fat:fat

1.45821148 0.13027963 0.03443794

units:trait!R units:trait!trait_ywt:ywt units:trait!trait_fat:ywt

1.00000000 23.20554057 2.50401740

units:trait!trait_fat:fat

1.66291555

> # the variance parameter single character constraint codes

> vpc.char(ywt.asr)

trait:Sire!trait_ywt:ywt trait:Sire!trait_fat:ywt trait:Sire!trait_fat:fat

"P" "P" "P"

units:trait!R units:trait!trait_ywt:ywt units:trait!trait_fat:ywt

"F" "P" "P"

units:trait!trait_fat:fat

"P"

> ywt.vp <- cbind.data.frame(names(ywt.asr$vparameters), vpc.char(ywt.asr),

1:length(ywt.asr$vparameters.type))

> names(ywt.vp) <- c("names", "constraint", "number")

> ywt.vp

names constraint number

trait:Sire!trait_ywt:ywt trait:Sire!trait_ywt:ywt P 1

trait:Sire!trait_fat:ywt trait:Sire!trait_fat:ywt P 2

trait:Sire!trait_fat:fat trait:Sire!trait_fat:fat P 3

units:trait!R units:trait!R F 4

units:trait!trait_ywt:ywt units:trait!trait_ywt:ywt P 5

units:trait!trait_fat:ywt units:trait!trait_fat:ywt P 6

units:trait!trait_fat:fat units:trait!trait_fat:fat P 7

> # heritA 4*V1 / (V1 + V5)

> vpredict(ywt.asr, hA ~ 4 * V1/(V1 + V5))

Estimate SE

hA 0.2364947 0.06117935

> # heritB 4*V3 / (V3 + V7)

> vpredict(ywt.asr, heritB ~ 4 * V3/(V3 + V7))
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Estimate SE

heritB 0.08115678 0.03936332

> # genetic corr

> vpredict(ywt.asr, gc ~ V2/sqrt((V1 * V3)))

Estimate SE

gc 0.5813634 0.2038863

> # phenotypic corr

> vpredict(ywt.asr, pc ~ (V2 + V6)/sqrt(((V1 + V5) * (V3 + V7))))

Estimate SE

pc 0.4071449 0.01832069

4.8 Switching between the gamma and sigma parameterization

For single section models when the residual model can be expressed as a scaled residual matrix,
ASReml-R offers the option of fitting parameters using either the sigma parameterization (with
sigma parameters, see Section 2.1.1), or the gamma parameterization (with gamma parameters,
Section 2.1.6). Specifying the residual model as a variance structure (or with dsum for multi-section
models, Section 3.8) forces ASReml-R to use the sigma parameterization. For example:

residual = ~idv(units)

residual = ~ar1v(Column):ar1(Row)

residual = ~us(Trait):units

would all use the sigma parameterization for model fitting. The following is the likelihood con-
vergence and table of variance parameter estimates for the RCB example when an IDV variance
structure is specified for the residual model:

> rcb.dat <- asreml.read.table("../examples/rcbdat.csv", header = TRUE, sep = ",")

> head(rcb.dat)

Variety Site Row Range Block yield

1 Var3 RCB 1 1 1 4420.84

2 Var44 RCB 2 1 1 4070.84

3 Var10 RCB 3 1 1 3917.50

4 Var37 RCB 4 1 1 3223.34

5 Var36 RCB 5 1 1 4028.34

6 Var35 RCB 6 1 1 3099.17

> rcb.dat$yield <- rcb.dat$yield/1000

> rcb.asr <- asreml(fixed = yield ~ 1 + Variety, random = ~idv(Block), residual =

~idv(units), data = rcb.dat)

Model fitted using the sigma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:17 2019
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LogLik Sigma2 DF wall cpu

1 -28.7733 1.0 96 23:23:17 0.0

2 2.7153 1.0 96 23:23:17 0.0

3 35.8161 1.0 96 23:23:17 0.0

4 55.9947 1.0 96 23:23:17 0.0

5 64.0512 1.0 96 23:23:17 0.0

6 65.0829 1.0 96 23:23:17 0.0

7 65.1126 1.0 96 23:23:17 0.0

8 65.1127 1.0 96 23:23:17 0.0

> summary(rcb.asr)$varcomp

component std.error z.ratio bound %ch

Block!Block 0.06715427 0.068195046 0.9847383 P 0

units!units 0.05014295 0.007314089 6.8556664 P 0

units!R 1.00000000 NA NA F 0

Note that in this case var(e) = σ2eI144 and var(u) = γrσ
2
eI3 with σ2r = γrσ

2
e . The overall scale

parameter units(R) is fixed at 1.0 and there is an estimated units variance. For both corre-
lation (gamma parameterization) and variance (sigma parameterization) models for the residual,
ASReml-R automatically includes an overall scale parameter. When a variance model (with asso-
ciated variance parameter) is specified, the overall scale parameter is fixed at 1.0 to avoid overpa-
rameterization. This is reflected by the constraint on units(R) in the summary table.

Using gammaPar=TRUE in asreml.options()

For single section models where the residual formula specifies a variance model with a single pa-
rameter, the default action to use the sigma parameterization can be switched to the gamma
parameterization by setting asreml.options(gammaPar=TRUE):

> asreml.options(gammaPar = TRUE)

> rcb.asr <- asreml(fixed = yield ~ 1 + Variety, random = ~idv(Block), residual =

~idv(units), data = rcb.dat)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:17 2019

LogLik Sigma2 DF wall cpu

1 58.2386 0.0608567 96 23:23:18 0.0

2 60.4027 0.0578118 96 23:23:18 0.0

3 62.6539 0.0546469 96 23:23:18 0.0

4 64.1290 0.0524343 96 23:23:18 0.0

5 64.8815 0.0510398 96 23:23:18 0.0

6 65.0836 0.0504189 96 23:23:18 0.0

7 65.1117 0.0501896 96 23:23:18 0.0

8 65.1127 0.0501448 96 23:23:18 0.0

Model fitted using the gamma parameterization.

ASReml 4.1.0 Fri Feb 2 09:50:17 2018

LogLik Sigma2 DF wall cpu

1 58.2386 0.0608567 96 09:50:17 0.0

2 60.4027 0.0578118 96 09:50:17 0.0
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3 62.6539 0.0546469 96 09:50:17 0.0

4 64.1290 0.0524343 96 09:50:17 0.0

5 64.8815 0.0510398 96 09:50:17 0.0

6 65.0836 0.0504189 96 09:50:17 0.0

7 65.1117 0.0501896 96 09:50:17 0.0

8 65.1127 0.0501448 96 09:50:17 0.0

Note the message to the screen indicating that the gamma parameterization has been used.

The variance parameters reported

By default, the sigma parameterization is used for reporting parameters:

> summary(rcb.asr)$varcomp

component std.error z.ratio bound %ch

Block!Block 0.06715656 0.068019908 0.9873075 P 0.2

units!units 0.05014483 NA NA F 0.0

units!R 0.05014483 0.007314511 6.8555266 P 0.0

Variance ratios estimated using the gamma parameterization can be reported by setting the param

argument of summary.asreml() to "gamma":

> summary(rcb.asr, param = "gamma")$varcomp

gamma component std.error z.ratio bound %ch

Block!Block 1.339252 0.06715656 0.068019908 0.9873075 P 0.2

units!units 1.000000 0.05014483 NA NA F 0.0

units!R 1.000000 0.05014483 0.007314511 6.8555266 P 0.0

It can sometimes be advantageous to switch to the gamma parameterization in terms of providing
more appropriate initial (starting) values as can be seen by comparison of the log-likelihoods in the
first iteration. We can see that for the simple RCB example the REML log-likelihood is the same
for the two fits (sigma then gamma parameterization) and the REML estimates of the two variance
parameters are also identical.

The gamma parameterization by default

To ensure upward compatibility with previous releases, asreml() also uses the gamma parameteri-
zation for model fitting by default if either no residual formula is specified or the residual formula
specifies a correlation structure. For example:

residual = ~id(units)

residual = ~ar1(Column):ar1(Row)

residual = ~id(units):cor(trait)

would all use the gamma parameterisation. The following is the likelihood convergence and default
table of variance parameter estimates when an ID variance structure is specified for the residual
model:
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> rcb.asr <- asreml(fixed = yield ~ 1 + Variety, random = ~idv(Block), residual =

~id(units), data = rcb.dat)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:18 2019

LogLik Sigma2 DF wall cpu

1 58.2386 0.0608567 96 23:23:18 0.0

2 60.4027 0.0578118 96 23:23:18 0.0

3 62.6539 0.0546469 96 23:23:18 0.0

4 64.1290 0.0524343 96 23:23:18 0.0

5 64.8815 0.0510398 96 23:23:18 0.0

6 65.0836 0.0504189 96 23:23:18 0.0

7 65.1117 0.0501896 96 23:23:18 0.0

8 65.1127 0.0501448 96 23:23:18 0.0

> summary(rcb.asr)$varcomp

component std.error z.ratio bound %ch

Block!Block 0.06715656 0.068019908 0.9873075 P 0.2

units!R 0.05014483 0.007314511 6.8555266 P 0.0

Multi-section models using dsum

In the case of multi-section models where the variance structure for the residual error term is a
direct sum (specified using dsum) the sigma parameterization is used, see Section 3.8 for more
detail.
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5 Specifying variance structures using ge-
netic and other relationships

5.1 Introduction

In many situations there are relationships between individuals and we expect the variance matrix
of the individual effects to be proportional to the relationship matrix. The relationship matrix
may arise from spatial, temporal, genetic or other relationships and the previous chapter has
discussed models motivated by spatial and temporal relationships. This chapter describes how to
specify models with general relationship or inverse relationship matrices but in addition describes
methods to efficiently analyse some common genetic relationship matrices that depend on pedigree
relationships. Version 3 considered two cases, generating an inverse relationship matrix from a
pedigree and using the ped() function to specify the model and inputing an inverse relationship
matrix using the giv() function. Version 4 unifies this by having a variance model function vm()
which allows the use of either a relationship or inverse relationship matrix, input as either a matrix,
a vector or as a sparse matrix or generated from a pedigree (using ainverse()). The relationship
matrix is usually positive definite but ASReml-R copes with semi positive definite and singular and
non-singular indefinite matrices.

In a genetic analysis we have phenotypic data on a set of individuals that are genetically linked via
a pedigree. The genetic effects are therefore correlated and, assuming normal modes of inheritance,
the correlation expected from additive genetic effects can be derived from the pedigree provided
all the genetic links are present. The additive genetic relationship matrix (sometimes called the
numerator relationship matrix, or A matrix) can be calculated from the pedigree. It is actually
the inverse relationship matrix that is required by asreml() for analysis. Fortunately the inverse
matrix is easier to calculate than the relationship matrix and ASReml-R takes account of this.

The inclusion of an A−1 matrix in an analysis is essentially a two step process:

1. the function ainverse() takes a pedigree data frame and returns the A−1 matrix in sparse form

2. the matrix from step 1 is included in an asreml() analysis using the vm() function.

For the more general situation, where the pedigree based inverse relationship matrix generated by
ainverse() is not appropriate, the user can include a general inverse variance matrix provided its
structure adheres to one of the allowable forms given in Section 5.3.
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5.2 Pedigree and genetic groups

In this chapter we illustrate the procedure using the data in Harvey (1977) described in Section
1.3.4.

5.2 Pedigree and genetic groups

5.2.1 Pedigree objects

The pedigree defines the genetic relationships among individuals when fitting a genetic model. The
pedigree object is simply a data frame with the following properties:

• three columns: the identity of the individual, its male parent and its female parent (or
maternal grand sire if the MGS option to ainverse() is to be specified)

• is sorted so that the row giving the pedigree of an individual appears before any row where
that individual appears as a parent

• uses identity 0 or NA for unknown parents.

For example, the first 20 lines of harvey.ped are:

harvey.ped <- read.table("harvey.ped", header = T, as.is = T)

head(harvey.ped, 20)

Calf Sire Dam

1 101 Sire_1 0

2 102 Sire_1 0

3 103 Sire_1 0

4 104 Sire_1 0

5 105 Sire_1 0

6 106 Sire_1 0

7 107 Sire_1 0

8 108 Sire_1 0

9 109 Sire_2 0

10 110 Sire_2 0

11 111 Sire_2 0

12 112 Sire_2 0

13 113 Sire_2 0

14 114 Sire_2 0

15 115 Sire_2 0

16 116 Sire_2 0

17 117 Sire_3 0

18 118 Sire_3 0

19 119 Sire_3 0

20 120 Sire_3 0

5.2.2 Genetic groups

If all individuals belong to one genetic group then, as above, use 0 as the identity of the parents of
base individuals. However, if base individuals belong to various genetic groups, this can be specified
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using the groups argument to ainverse(). The pedigree data frame must then identify these groups.
All base individuals should have group identifiers as parents. In this case the identity 0 will only
appear on the group identity rows, as in the following example where three sire lines are fitted as
genetic groups.

harveyG.ped <- read.table("harveyg.ped", header = T, as.is = T)

head(harveyG.ped, 20)

Calf Sire Dam

1 G1 0 0

2 G2 0 0

3 G3 0 0

4 Sire_1 G1 G1

5 Sire_2 G1 G1

6 Sire_3 G1 G1

7 Sire_4 G2 G2

8 Sire_5 G2 G2

9 Sire_6 G3 G3

10 Sire_7 G3 G3

11 Sire_8 G3 G3

12 Sire_9 G3 G3

13 101 Sire_1 G1

14 102 Sire_1 G1

15 103 Sire_1 G1

16 104 Sire_1 G1

17 105 Sire_1 G1

18 106 Sire_1 G1

19 107 Sire_1 G1

20 108 Sire_1 G1

It is usually appropriate to allocate a genetic group identifier where the parent is unknown.

5.3 Specifying relationship and inverse relationship matrices

A symmetric matrix or symmetric inverse matrix from an external source can be included in the
analysis as:

• a sparse inverse variance matrix held in three column co-ordinate form in row major order.
This triplet matrix must have class ginv from a call to ainverse, or have attribute INVERSE set
to TRUE. For backwards compatibility, a three column data frame is assumed to be a sparse
inverse in co-ordinate form. In either case, the source must have a rowNames attribute.

• a sparse relationship matrix held in three column co-ordinate form in row major order. If the
attribute INVERSE is not set then FALSE is assumed; a rowNames attribute must be set.

• a matrix (or Matrix object) with a dimnames attribute giving the levels of the model term
being defined. This may be a relationship matrix or its inverse; if an inverse, it must have an
attribute INVERSE set to TRUE.

• a numeric vector of the lower triangular elements in row major order. The vector must have
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5.4 Generating an A-inverse matrix using ainverse()

a rowNames attribute, and if an inverse structure, it must also have an INVERSE attribute
set to TRUE.

In all cases the matrix object must have an attribute rowNames, a character vector that uniquely
identifies each row of the matrix. This vector of identifiers may be a super set of the vector of levels
of the corresponding factor in the data, but must at least contain all the individuals in the data.

An inverse relationship matrix can be obtained from the harvey pedigree using:

harvey.ainv <- ainverse(harvey.ped)

attr(harvey.ainv, "rowNames")

[1] "Sire_1" "Sire_2" "Sire_3" "Sire_4" "Sire_5" "Sire_6" "Sire_7" "Sire_8" "Sire_9"

[10] "101" "102" "103" "104" "105" "106" "107" "108" "109"

[19] "110" "111" "112" "113" "114" "115" "116" "117" "118"

[28] "119" "120" "121" "122" "123" "124" "125" "126" "127"

[37] "128" "129" "130" "131" "132" "133" "134" "135" "136"

[46] "137" "138" "139" "140" "141" "142" "143" "144" "145"

[55] "146" "147" "148" "149" "150" "151" "152" "153" "154"

[64] "155" "156" "157" "158" "159" "160" "161" "162" "163"

[73] "164" "165"

harvey.ainv[1:20, ]

Row Column Ainverse

[1,] 1 1 3.6666667

[2,] 2 2 3.6666667

[3,] 3 3 2.6666667

[4,] 4 4 3.6666667

[5,] 5 5 3.3333333

[6,] 6 6 3.0000000

[7,] 7 7 3.6666667

[8,] 8 8 3.3333333

[9,] 9 9 3.6666667

[10,] 10 1 -0.6666667

[11,] 10 10 1.3333333

[12,] 11 1 -0.6666667

[13,] 11 11 1.3333333

[14,] 12 1 -0.6666667

[15,] 12 12 1.3333333

[16,] 13 1 -0.6666667

[17,] 13 13 1.3333333

[18,] 14 1 -0.6666667

[19,] 14 14 1.3333333

[20,] 15 1 -0.6666667

5.4 Generating an A-inverse matrix using ainverse()

ainverse() uses the method of Meuwissen and Luo (1992) to compute the inverse relationship matrix
directly from the pedigree. A complete description of the arguments and return value of a call
to ainverse() is given in the ASReml-R Package Reference available at http://asreml.org under
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Resources > ASReml docs and on the VSN International website https://www.vsni.co.uk.

5.5 Using Pedigree and G-inverse objects

Putting it all together, an analysis of average daily gain (y3 in harvey.dat) using the pedigree
harvey.ped can be obtained from:

harvey.ped <- read.table("harvey.ped", header = T, as.is = T)

harvey <- asreml.read.table("harvey.dat", header = T, as.is = T)

harvey.ai <- ainverse(harvey.ped)

adg0.asr <- asreml(y3 ~ Line, random = ~vm(Calf, harvey.ai), data = harvey)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:18 2019

LogLik Sigma2 DF wall cpu

1 -239.696 663.731 62 23:23:18 0.0

2 -239.347 591.895 62 23:23:18 0.0

3 -238.932 433.351 62 23:23:18 0.0

4 -238.842 331.737 62 23:23:18 0.0

5 -238.831 284.401 62 23:23:18 0.0

6 -238.831 273.598 62 23:23:18 0.0

The variance components are given in:

summary(adg0.asr)$varcomp

component std.error z.ratio bound %ch

vm(Calf, harvey.ai) 500.3245 498.1786 1.004307 P 0.3

units!R 273.5984 409.7263 0.667759 P 0.0

and the first 15 E-BLUP estimates are:

head(adg0.asr$coef$random, 15)

bu

vm(Calf, harvey.ai)_Sire_1 11.0207260

vm(Calf, harvey.ai)_Sire_2 -17.6304408

vm(Calf, harvey.ai)_Sire_3 6.6097149

vm(Calf, harvey.ai)_Sire_4 -8.0148417

vm(Calf, harvey.ai)_Sire_5 8.0148417

vm(Calf, harvey.ai)_Sire_6 8.4779824

vm(Calf, harvey.ai)_Sire_7 0.4442278

vm(Calf, harvey.ai)_Sire_8 -26.9512810

vm(Calf, harvey.ai)_Sire_9 18.0290709

vm(Calf, harvey.ai)_101 -7.2985297

vm(Calf, harvey.ai)_102 16.3863802

vm(Calf, harvey.ai)_103 2.5220427

vm(Calf, harvey.ai)_104 -6.7208489
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vm(Calf, harvey.ai)_105 12.3426151

vm(Calf, harvey.ai)_106 17.5417417

This is an example of an individual animal model (I) estimating additive variance, σ2A, and an
animal model residual, σ2eI . In this example we see the estimate of σ2A is 500.3245 and the estimate
of σ2eI is 273.5984. The resulting variance matrix has terms σ2A + σ2eI , the phenotypic variance, in
the diagonal elements. The only non-diagonal terms (1/4) in the relationship matrix occur between
calves with the same sire (half-sibs) and so their covariance is (1/4)σ2A. Because of this relatively
simple covariance structure an equivalent sire model can be fitted estimating a sire variance, σ2S
and a sire model residual, σ2eS . In this model the phenotypic variance is given by σ2S + σ2eS and the
covariance between half-sibs is σ2S . We therefore expect σ2A + σ2eI = σ2S + σ2eA and σ2A = 4σ2S so that
σ2eI = σ2eS − 3σ2S . An alternative and instructive way of deriving the sire model is to consider a
reduced animal model (RA). The RA model was first introduced by Quass and Pollack (1980) to
obtain predicted additive genetic effects without the need to set up equations for all individuals.
In this case the additive genetic effects for animals without offspring uAcalf are written in terms
of their parental effects, uAdam, and a mendelian sampling uAmencalf term. In our case the calves
have no offspring so

uAcalf = 0.5uAsire + 0.5uAdam + uAmencalf .

The terms uAmencalf have additive variance 0.5σ2A so that uAcalf has variance σ2A. In this case a
further simplification occurs because the dams are unknown and we combine the last two terms to
give uAcalf = 0.5uAsire + uArescalf with uArescalf having a variance 0.75σ2A. The sire model takes
this a stage further and has a sire model sire effect uRsire = 0.5uAsire and hence σ2S = 0.25σ2A.
Further, the two residuals are combined to give

eSrescalf = aArescalf + eArescalf

and σ2eS = σ2eI − 0.75σ2A. This model is now fitted:

asreml.options(gammaPar = TRUE)

adg1.asr <- asreml(y3 ~ Line, random = ~Sire, data = harvey)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:18 2019

LogLik Sigma2 DF wall cpu

1 -238.993 672.057 62 23:23:18 0.0

2 -238.915 664.698 62 23:23:18 0.0

3 -238.833 650.350 62 23:23:18 0.0

4 -238.831 647.863 62 23:23:18 0.0

gives

summary(adg1.asr)$varcomp

component std.error z.ratio bound %ch

Sire 124.8934 124.9705 0.9993829 P 0.2

units!R 647.8634 122.3426 5.2954833 P 0.0

and the 9 Sire E-BLUP estimates are:

head(adg1.asr$coef$random, 9)
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bu

Sire_Sire_1 5.5094593

Sire_Sire_2 -8.8136173

Sire_Sire_3 3.3041580

Sire_Sire_4 -4.0066901

Sire_Sire_5 4.0066901

Sire_Sire_6 4.2381029

Sire_Sire_7 0.2220591

Sire_Sire_8 -13.4731042

Sire_Sire_9 9.0129422

We see the final logl is the same in the two models (-238.831) and the E-BLUPs for sires in the
individual animal model are twice those in the sire model. We see the estimate of σ2S is 124.8934
and the estimate of σ2eS is 647.8634. These convert to give estimates of σ2A = 4σ2S = 4(124.8934) =
499.5736 and σ2eI = σ2eS − 3σ2S = 647.8634 − 3(124.8934) = 273.1562 which agree well with the
estimates derived from the animal model of σ2A = 500.3245 and σ2eI = 273.5984. We note that
if the sire variance is over estimated, perhaps by not fitting all the appropriate fixed effects, the
estimate of the animal residual variance found from conversion of the sire model estimates might
be negative. If an animal model is fitted ASReml-R does not allow negative residual variances and
the estimate will tend to zero. Estimates of the additive variance can be found by constraining the
residual variance to a small positive variance. User specified general inverse matrices are included
in an analysis in the same way. Consider an easily verified example where we define a general
inverse matrix for Sire in the Harvey data as (0.5)I9 and estimate a scaled sire variance σ2S2. We
expect σ2SI9 = σ2S2(0.5)−1I9 = 2σ2S2I9 so σ2S2 = σ2S/2.

sire.giv <- data.frame(row = seq(1, 9), column = seq(1, 9), value = rep(0.5, 9))

attr(sire.giv, "INVERSE") <- TRUE

attr(sire.giv, "rowNames") <- paste("Sire_", seq(1, 9), sep = "")

asreml.options(gammaPar = TRUE)

adg2.asr <- asreml(y3 ~ Line, random = ~vm(Sire, sire.giv), data = harvey)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:19 2019

LogLik Sigma2 DF wall cpu

1 -238.831 646.480 62 23:23:19 0.0

2 -238.831 646.907 62 23:23:19 0.0

3 -238.831 647.832 62 23:23:19 0.0

gives

summary(adg2.asr)$varcomp

component std.error z.ratio bound %ch

vm(Sire, sire.giv) 62.44299 62.52914 0.9986223 P 0.1

units!R 647.83182 122.33371 5.2956116 P 0.0

In this case σ2S2 = 62.44299 which is in good agreement with the converted value (0.5)σ2S =
124.8934/2 = 62.4467 from the previous analysis.

Alternatively, we can fit the equivalent model by including a matrix 2I9 leading to the same log-
likelihood and estimates of variances as the previous analysis:
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sire.mat <- data.frame(row = seq(1, 9), column = seq(1, 9), value = rep(2, 9))

sire.mat <- as.matrix(sire.mat)

attr(sire.mat, "rowNames") <- paste("Sire_", seq(1, 9), sep = "")

adg3.asr <- asreml(y3 ~ Line, random = ~vm(Sire, sire.mat), data = harvey)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:19 2019

LogLik Sigma2 DF wall cpu

1 -238.831 646.480 62 23:23:19 0.0

2 -238.831 646.907 62 23:23:19 0.0

3 -238.831 647.832 62 23:23:19 0.0

summary(adg3.asr)$varcomp

component std.error z.ratio bound %ch

vm(Sire, sire.mat) 62.44299 62.52914 0.9986223 P 0.1

units!R 647.83182 122.33371 5.2956116 P 0.0

Most variance matrices are positive definite so every linear combination of effects has a positive
variance. However, there are situations in which a variance might be zero, for example, with a
dominance model and a fully inbred individual. To illustrate this, we assume we have an extra
individual unrelated to the first nine with zero variance so that the variance matrix has 10 rows
and columns with nine diagonal elements being 2 and the last being zero. This matrix is positive
semi-definite and to allow ASReml-R to continue using Lagrangian multiplies we indicate this by
adding as a singularity code PSD. If the relationship matrix is read in as a vector

ped.vec <- c(2, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,

0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

attr(ped.vec, "rowNames") <- paste("Sire_", seq(1, 10), sep = "")

adg4.asr <- asreml(y3 ~ Line, random = ~vm(Sire, ped.vec, "PSD"), data = harvey)

Note: ped.vec assumed a relationship (not inverse) structure.

Note: ped.vec assumed a relationship (not inverse) structure.

Warning in asreml(y3 ~ Line, random = ~vm(Sire, ped.vec, "PSD"), data = harvey): ped.vec:

Zero pivot in row 10.

Warning in asreml(y3 ~ Line, random = ~vm(Sire, ped.vec, "PSD"), data = harvey): ped.vec:

Zero pivot in row 11.

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:19 2019

LogLik Sigma2 DF wall cpu

1 -238.831 646.480 62 23:23:19 0.0

2 -238.831 646.907 62 23:23:19 0.0

3 -238.831 647.832 62 23:23:19 0.0

gives

summary(adg4.asr)$varcomp
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component std.error z.ratio bound %ch

vm(Sire, ped.vec, "PSD") 62.44299 62.52914 0.9986223 P 0.1

units!R 647.83182 122.33371 5.2956116 P 0.0

Again, if we have clones then the variance matrix can be positive semi definite, so if individual 10
was a clone of 9, reading in the relationship matrix as a sparse matrix:

spped.mat <- data.frame(Row = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), Column = c(1, 2, 3, 4, 5,

6, 7, 8, 9, 9), Value = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1))

spped.mat <- as.matrix(spped.mat)

attr(spped.mat, "rowNames") <- paste("Sire_", seq(1, 10), sep = "")

adg5.asr <- asreml(y3 ~ Line, random = ~vm(Sire, spped.mat, "NSD"), data = harvey)

Warning in checkPSD(model.terms$mixed$Vars): smisg: 1 negative pivots in spped.mat.

Warning in asreml(y3 ~ Line, random = ~vm(Sire, spped.mat, "NSD"), data = harvey):

spped.mat: Zero pivot in row 10; non-zero element in column 9

Warning in asreml(y3 ~ Line, random = ~vm(Sire, spped.mat, "NSD"), data = harvey):

spped.mat: Zero pivot in row 9.

Warning in asreml(y3 ~ Line, random = ~vm(Sire, spped.mat, "NSD"), data = harvey):

spped.mat: Negative pivot in row 10.

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:19 2019

LogLik Sigma2 DF wall cpu

1 -238.993 672.057 62 23:23:19 0.0

2 -238.915 664.698 62 23:23:19 0.0

3 -238.833 650.350 62 23:23:19 0.0

4 -238.831 647.863 62 23:23:19 0.0

gives

summary(adg5.asr)$varcomp

component std.error z.ratio bound %ch

vm(Sire, spped.mat, "NSD") 124.8934 124.9705 0.9993829 P 0.2

units!R 647.8634 122.3426 5.2954833 P 0.0

If the relationship matrix is estimated then it might be non-singular indefinite (positive and negative
roots). ND indicates to ASReml-R to ignore the indefinite condition and proceed. If the matrix
is singular indefinite (positive, zero and negative roots) NSD indicates to ASReml-R to proceed
ignoring the indefinite condition and using Lagrangian multipliers to process the matrix.

5.6 Linking a relationship matrix to regressor variables

See Section 4.3.6.1 for details on linking a relationship matrix to regressor variables.
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6 Prediction from the linear
model

6.1 Introduction

Prediction is the process of forming a linear function of the vector of fixed and random effects in
the linear model to obtain an estimated or predicted value for a quantity of interest. It is primarily
used for predicting tables of adjusted means. If the table is based on a subset of the explanatory
variables then the other variables need to be accounted for. It is usual to form a predicted value
either at specified values of the remaining variables, or averaging over them in some way.

Some predict methods require as input a data frame of the factor levels and variate values used
to fit the model, augmented by new points for which predictions are required. This approach has
limitations; for example, it does not lend itself easily to the notion of averaging over particular
factors in the model to form predictions.

The approach to prediction described here is a generalization of that of Lane and Nelder (1982) who
consider fixed effects models only. They form fitted values for all combinations of the explanatory
variables in the model, then take marginal means across the explanatory variables not relevant to
the current prediction. Our case is more general in that random effects can be fitted in mixed
models. A full description can be found in Gilmour et al. (2004) and Welham et al. (2004).

Random factor terms may contribute to predictions in several ways. They may be evaluated at
a given value(s) specified by the user, they may be averaged over, or they may be omitted from
the fitted values used to form the prediction. Averaging over the set of random effects gives a
prediction specific to the random effects observed. We describe this as a conditional prediction.
Omitting the term from the model produces a prediction at the population average (zero), that is,
substituting the assumed population mean for an unknown random effect. We call this a marginal
prediction. Note that in any prediction, some terms may be evaluated as conditional and others at
marginal values, depending on the aim of prediction.

For fixed factors there is no pre-defined population average, so there is no natural interpretation
for a prediction derived by omitting a fixed term from the fitted values. Averages must therefore
be taken over all the levels present to give a sample specific average, or value(s) must be specified
by the user.

For covariate terms (fixed or random) the associated effect represents the coefficient of a linear
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trend in the data with respect to the covariate values. These terms should be evaluated at a given
value of the covariate, or averaged over several given values. Omission of a covariate from the
predictive model is equivalent to predicting at a zero covariate value, which is often inappropriate.

Interaction terms constructed from factors generate an effect for each combination of the factor
levels, and behave like single factor terms in prediction. Interactions constructed from covariates
fit a linear trend for the product of the covariate values and behave like a single covariate term.
An interaction of a factor and a covariate fits a linear trend for the covariate for each level of the
factor. For both fixed and random terms, a value for the covariate must be given, but the factor
levels may be evaluated at a given level, averaged over or (for random terms only) omitted.

Before considering some examples in detail, it is useful to consider the conceptual steps involved in
the prediction process. Given the explanatory variables used to define the linear (mixed) model,
the four main steps are:

1. Choose the explanatory variable(s) and their respective value(s) for which predictions are re-
quired; the variables involved will be referred to as the classify set and together define the multiway
table to be predicted.

2. Determine which variables should be averaged over to form predictions. The values to be
averaged over must also be defined for each variable; the variables involved will be referred to as
the averaging set. The combination of the classify set with these averaging variables defines a
multiway hyper-table. Note that variables evaluated at only one value, for example, a covariate at
its mean value, can be formally introduced as part of the classifying or averaging set.

3. Determine which terms from the linear mixed model are to be used in forming predictions
for each cell in the multiway hyper-table in order to give appropriate conditional or marginal
predictions.

4. Choose the weights to be used when averaging cells in the hyper-table to produce the multiway
table to be reported.

Note that after steps 1 and 2 there may be some explanatory variables in the fitted model that
do not classify the hyper-table. These variables occur in terms that are ignored when forming
the predicted values. It was concluded above that fixed terms could not sensibly be ignored in
forming predictions, so that variables should only be omitted from the hyper-table when they only
appear in random terms. Whether terms derived from these variables should be used when forming
predictions depends on the application and aim of the prediction.

The main difference in this prediction process compared to that described by Lane and Nelder
(1982) is the choice of whether to include or exclude model terms when forming predictions. In
linear models, since all terms are fixed, terms not in the classify set must be in the averaging set.

6.2 The predict method

The predict method is detailed in the ASReml-R Package Reference obtained in R by typing help(asreml).
This document is available at http://asreml.org under Resources > ASReml docs and on the
VSN International website https://www.vsni.co.uk. A simple example is the prediction of variety
means from fitting model 2a (Section 4.1) to the NIN field trial data. Recall that a randomised
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block model with random replicate effects is fitted to this data by:

> asreml.options(gammaPar = TRUE)

> rcb.asr <- asreml(yield ~ Variety, random = ~idv(Replicate), residual = ~idv(units),

na.action = na.method(x = "include"), data = nin89)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:19 2019

LogLik Sigma2 DF wall cpu

1 -454.807 50.3285 168 23:23:20 0.0

2 -454.663 50.1198 168 23:23:20 0.0

3 -454.532 49.8684 168 23:23:20 0.0

4 -454.472 49.6374 168 23:23:20 0.0

5 -454.469 49.5854 168 23:23:20 0.0

A table of means classified by Variety can be obtained from:

> rcb.pv <- predict(rcb.asr, classify = "Variety")

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:20 2019

LogLik Sigma2 DF wall cpu

1 -454.469 49.5824 168 23:23:20 0.1

2 -454.469 49.5824 168 23:23:20 0.0

3 -454.469 49.5824 168 23:23:20 0.0

> names(rcb.pv)

[1] "pvals" "avsed"

A component named pvals is included in the asreml object:

> head(rcb.pv$pvals)

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use 'average' to move ignored factors into the averaging set.

- The ignored set: Replicate

Variety predicted.value std.error status

1 ARAPAHOE 29.4375 3.855687 Estimable

2 BRULE 26.0750 3.855687 Estimable

3 BUCKSKIN 25.5625 3.855687 Estimable

4 CENTURA 21.6500 3.855687 Estimable

5 CENTURK78 30.3000 3.855687 Estimable

6 CHEYENNE 28.0625 3.855687 Estimable
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as well as the average standard error of difference between the predicted means:

> rcb.pv$avsed

overall

4.979075

6.2.1 The prediction process

Predictions are formed as an extra process in the final iteration. predict.asreml() parses the argu-
ment list and calls update.asreml() using the final parameter estimates in the required asreml object.
Additional options for predict.asreml() can be set in asreml.options(), such as requesting extra mem-
ory, adding spline predict points or controlling the number of additional iterations, bound by the
rules of update.asreml().

By default, factors are predicted at each level, simple covariates are predicted at their overall
mean and covariates used as a basis for splines or orthogonal polynomials are predicted at their
design points. Covariates grouped into a single term using the grp() model function) are treated
as covariates.

Special model terms mv and units are always ignored.

Prediction at particular values of a covariate or particular levels of a factor is achieved by:

1. including the variables in the classify set and specifying any non-default values at which pre-
dictions are to be made by using the levels argument.

2. specifying the averaging set. The default averaging set is those explanatory variables involved
in fixed effect model terms that are not in the classifying set. By default, variables that only define
random model terms are ignored. The average argument allows these variables to be added to the
default averaging set.

3. determining the linear model terms to use in prediction. The default rule is that all model terms
based entirely on the classifying and averaging set are used. The use and ignore arguments allow
this default set of model terms to be modified by adding or removing terms, respectively. The
onlyuse argument explicitly specifies the model terms to use, ignoring all others. The argument
except explicitly specifies the model terms not to use, including all others. These arguments may
implicitly modify the averaging set by including variables defining terms in the predicted model
not in the classify set. It is sometimes easier to specify the classify set and the prediction linear
model and allow ASReml-R to construct the averaging set.

4. choosing the weights for forming means over dimensions in the hyper-table. The default is to
average over the specified levels but the average argument can be used to specify weights to be
used in averaging over a factor.

For example,

> obj.asr <- asreml(yield ~ Site + Variety, random = ~Site:Variety + at(Site):Block, ...)

> pbj.pv <- predict(obj.asr, classify = "Variety")
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puts Variety in the classify set, Site in the averaging set and Block in the ignore set. Consequently,
the Site×Variety hyper-table is formed from from model terms Site, Variety and Site:Variety

but ignoring all terms in at(Site):Block, and then averaging across sites to produce variety
predictions.

6.3 Aliasing

There are often situations in which the fixed effects design matrix X is not of full column rank.
These can be classified according to the cause of aliasing:

1. linear dependencies among the model terms due to over-parameterisation of the model.

2. no data present for some factor combinations so that the corresponding effects cannot be
estimated.

3. linear dependencies due to other, usually unexpected, structure in the data.

The first type of aliasing is imposed by the parameterisation chosen and can be determined from
the model. The second type of aliasing can be detected when setting up the design matrix for
parameter estimation (which may require revision of imposed constraints). The third type can
then be detected during the absorption of the mixed model equations. Dependencies (aliasing) can
be dealt with in several ways and ASReml-R checks that predictions are of estimable functions in
the sense defined by Searle (1971, p160) and are invariant to the constraint method used.

Normally ASReml-R does not return predictions of non-estimable functions but the aliased ar-
gument can be used to control this for each predict table. However, using aliased is rarely a
satisfactory solution. Failure to report predicted values normally means that the prediction is
averaging over some cells of the hyper-table that have no information and therefore cannot be
averaged in a meaningful way. Appropriate use of the average or present arguments will usually
resolve the problem. The present argument enables the construction of means by averaging only
the estimable cells of the hyper-table. It is regularly used for nested factors, for example locations
nested in regions.

6.4 Complicated weighting

Generally, when forming a prediction table, it is necessary to average over (or ignore) some potential
dimensions of the prediction table. By default, ASReml-R uses equal weights (1/f for a factor with
f levels). More complicated weighting is achieved by using the average argument to set specific
(unequal) weights for each level of a factor. However, sometimes the weights to be used need to
be defined with respect to two or more factors. The simplest case is when there are missing cells
and weighting is equal for those cells in a multiway table that are present; this is achieved by using
the present argument. This is further generalized by allowing weights for use by the present

averaging process via a named component prwts of the present list.

The factors in the table of weights are specified with the present argument and the table of weights
with the prwts component of the present list. There may be a maximum of two independent lists
of factors in the present list, and, if specified prwts applies to the first list only. The order of
factors in the tables of weights must correspond to the order in the present list with later factors
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nested within preceding factors. Check the output to ensure that the values in the tables of weights
are applied in the correct order.

Consider a rather complicated example from a rotation experiment conducted over several years.
This particular analysis followed the analysis of the daily live weight gain per hectare of the sheep
grazing the plots. There were periods when no sheep grazed. Different flocks grazed in the different
years. Daily liveweight gain was assessed between 5 and 8 times in the various years. To obtain a
measure of total productivity in terms of sheep liveweight, we need to weight the daily per sheep
figures by the number of sheep grazing days per month. Treatment effects for each year can be
obtained from:

> predict(obj.asr, classify = "year:crop:pasture:lime",

levels = list(year=1,crop=1),

average = list(month=c(56,55,56,53,57,63 rep(0,6))))

> predict(obj.asr, classify = "year:crop:pasture:lime", levels = list(year = 2, crop = 1),

average = list(month = c(36, 0, 0, 53, 23, 24, 54, 54, 43, 35, 0, 0)))

> predict(obj.asr, classify = "year:crop:pasture:lime", levels = list(year = 3, crop = 1),

average = list(month = c(70, 0, 21, 17, 0, 0, 0, 70, 0, 0, 53, 0)))

> predict(obj.asr, classify = "year:crop:pasture:lime", levels = list(year = 4, crop = 1),

average = list(month = c(53, 56, 22, 92, 19, 44, 0, 0, 36, 0, 0, 49)))

> predict(obj.asr, classify = "year:crop:pasture:lime", levels = list(year = 5, crop = 1),

average = list(month = c(0, 22, 0, 53, 70, 22, 0, 51, 16, 51, 0, 0)))

and averages over years from:

> predict(obj.asr, classify="crop:pasture:lime",

levels = list(crop=1),

present = list(c("year","month"),

prwts=c(56,55,56,53,57,63,0,0,0,0,0,0,

36,0,0,53,23,24,54,54,43,35,0,0,

70,0,,21,17,0,0,0,70,0,0,53,0,

53,56,22,92,19,44,0,0,36,0,0,49,

0,22,0,53,70,22,0,51,16,51,0,0}/5))

Both sets of predict() calls are given to show how the weights were derived and used. Notice that
the order in c("year", "month") implies that the weight coefficients are presented in standard
order with the levels for months cycling within levels for years.

6.5 Further examples

Predict variety means from an RCB analysis of the NIN field trial data.

> nin89.asr <- asreml(fixed = yield ~ Variety, random = ~Rep, data = nin89)

> nin89.pv <- predict(nin89.fm, classify = "Variety")

Variety means from the NIN field trial data in the presence of a covariate x.
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> nin89.asr <- asreml(fixed = yield ~ Variety + x, random = ~Rep, data = nin89)

> nin89.pv <- predict(nin89.fm, classify = "Variety")

will predict variety means at the average of x ignoring random replicate effects.

Variety means from the NIN field trial data at a specified value of x

> nin89.asr <- asreml(fixed = yield ~ Variety + x + Rep, data = nin89)

> nin89.pv <- predict(nin89.fm, classify = "Variety:x", levels = list(x = 2))

predicts variety means at x=2, averaged over fixed replicate effects.

Variety effects from an across site analysis

> obj.asr <- asreml(fixed = yield ~ Variety, random = ~Variety:Site, data = ...)

> obj.pv <- predict(sm, classify = "Variety")

predicts variety means ignoring the site:variety term while

> obj.pv <- predict(sm, classify="Variety", average=list(Site=NULL))}

forms the hyper-table based on Site and Variety with each cell formed from linear combinations
of Variety and Variety:Site effects; Variety predictions are then formed from averages across
Site levels.

Predict trait means for each team for the Orange wether trial

> orange.asr <- asreml(cbind(gfw, fdiam) ~ trait + trait:Year, random = ~trait:Team, data =

orange)

> orange.pv <- predict(orange.asr, classify = "trait:Team")

forms the hyper-table for each trait based on Year and Team with each linear combination in each
cell of the hyper-table for each trait using Team and Year effects. Team predictions are produced
by averaging over years.
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7 Examples

7.1 Introduction

This section considers the analysis of several examples to illustrate the capabilities of ASReml-R in
the context of analysing real data-sets. We discuss some of the components returned from ASReml-
R and indicate when potential problems may occur. Statistical concepts and issues are discussed
as necessary but we stress that the analyses are only illustrative.

7.2 Split Plot Design

The first example is the analysis of a split plot design originally presented by Yates (1935). The
experiment was conducted to assess the effects on yield of three oat varieties (Golden Rain, Mar-
vellous and Victory) with four levels of nitrogen application (0, 0.2, 0.4 and 0.6 cwt/acre). The
field layout consisted of six blocks (labelled I, II, III, IV, V and VI) with three whole-plots per block
each split into four sub-plots. The three varieties were randomly allocated to the three whole-plots
while the four levels of nitrogen application were randomly assigned to the four sub-plots within
each whole-plot. The data is in Table 7.1.

Table 7.1: A split-plot field trial of oat varieties and nitrogen application

Nitrogen
Block Variety 0.0cwt 0.2cwt 0.4cwt 0.6cwt

GR 111 130 157 174
I M 117 114 161 141

V 105 140 118 156
GR 61 91 97 100

II M 70 108 126 149
V 96 124 121 144
GR 68 64 112 86

III M 60 102 89 96
V 89 129 132 124
GR 74 89 81 122

IV M 64 103 132 133
V 70 89 104 117
GR 62 90 100 116

V M 80 82 94 126
V 63 70 109 99
GR 53 74 118 113

VI M 89 82 86 104
V 97 99 119 121

A standard analysis of these data recognises the two basic elements inherent in the experiment:

1. the stratification of the experiment units, that is the blocks, whole-plots and sub-plots, and
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2. the treatment structure that is superimposed on the experimental material.

The latter is of prime interest in the presence of stratification. The aim of the analysis is to
examine the importance of the treatment effects while accounting for the stratification and restricted
randomisation of the treatments to the experimental units.

The function calls to initially create a data frame and perform the standard split-plot analysis in
ASReml-R are given below. The variate/factor names are specified in the header line of oats.txt,
with factor names beginning with a capital letter. The function asreml.read.table() recognises
this convention and automatically creates the factors in the data frame:

oats <- asreml.read.table("../UKMay16/oats.txt", header = T)

asreml.options(gammaPar = TRUE)

oats.asr <- asreml(fixed = yield ~ Variety + Nitrogen + Variety:Nitrogen, random =

~idv(Blocks) + idv(Blocks):idv(Wplots), residual = ~idv(units), data = oats)

The fields in the oats data frame are:

> names(oats)

[1] "Blocks" "Nitrogen" "Subplots" "Variety" "Wplots" "yield"

The first five are factors describing the stratification, or experiment design, and applied treatments.
The standard split plot analysis is achieved by fitting terms Block and Blocks:Wplots as random
effects. It is not necessary to specify Blocks:Wplot:Subplots as these three factors uniquely define
the experimental units. The fixed effects include the main effects of both Variety and Nitrogen

and their interaction.

The variance components are:

> summary(oats.asr)$varcomp

component std.error z.ratio bound %ch

Blocks!Blocks 214.4906 168.66037 1.271731 P 0.1

Blocks:Wplots!Blocks 106.0686 67.88201 1.562543 P 0.0

units!R 177.0946 37.33601 4.743266 P 0.0

For simple variance component models such as the above, the default parameterisation for the
variance parameters is as the ratio to the residual variance. Thus ASReml-R returns the REML
estimate of the variance parameters on the gamma and sigma scale for each term in the random
model.

The default synopsis for testing fixed effects in ASReml-R is a table of incremental Wald tests (see
Section 3.14):

> wald(oats.asr)

Wald tests for fixed effects.

Response: yield
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Terms added sequentially; adjusted for those above.

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 43444 245.312 <2e-16 ***

Variety 2 526 2.970 0.2264

Nitrogen 3 20021 113.050 <2e-16 ***

Variety:Nitrogen 6 322 1.817 0.9358

residual (MS) 177

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this example there are four terms included in the summary. The overall mean (Intercept)

is included though it is of no interest for these data. The tests are sequential, that is the effect
of each term is assessed by the change in sums of squares achieved by adding the term to the
current model, given those terms appearing above the current term are already included. For
example, the effect of Nitrogen is assessed by calculating the change in sums of squares for the two
models (Intercept)+Variety+Nitrogen and (Intercept)+Variety. No refitting occurs, that is
the variance parameters are held constant at the REML estimates obtained from the currently
specified fixed model.

The usual ANOVA divides into three strata, with treatment effects separating into different strata
as a consequence of the balanced design and the confounding of main effects of Variety with
whole-plots. It is straightforward to derive the ANOVA estimates of the stratum variances from the
above REML estimates. That is,

blocks = 12σ̂2b + 4σ̂2w + σ̂2 = 3175.1

blocks.wplots = 4σ̂2w + σ̂2 = 601.3

residual = σ̂2 = 177.1

The incremental Wald tests have an asymptotic χ2 distribution, with degrees of freedom (df) given
by the number of estimable effects (the number in the df column). The denominator degrees of
freedom for testing fixed effects and approximate stratum variances are returned by:

> oats.wld <- wald(oats.asr, denDF = "default")

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:20 2019

LogLik Sigma2 DF wall cpu

1 -209.378 177.083 60 23:23:21 0.0

2 -209.378 177.083 60 23:23:21 0.0

3 -209.378 177.083 60 23:23:21 0.0

> oats.wld$Wald

Wald tests for fixed effects.

Response: yield

Df denDF F.inc Pr

(Intercept) 1 5 245.100 0.00002
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Variety 2 10 1.485 0.27239

Nitrogen 3 45 37.690 0.00000

Variety:Nitrogen 6 45 0.303 0.93220

> oats.wld$stratumVariances

df Variance Blocks!Blocks Blocks:Wplots!Blocks units!R

Blocks!Blocks 5 3175.0556 12 4 1

Blocks:Wplots!Blocks 10 601.3306 0 4 1

units!R 45 177.0833 0 0 1

Determining the denominator degrees of freedom is straightforward for balanced designs, such as
the split-plot design, but it is not so straightforward in unbalanced designs, such as the rat data
set described in the next section.

Predicted means for the Variety, Nitrogen and Variety:Nitrogen effects can be obtained from
the predict method in separate statements:

> oatsV.pv <- predict(oats.asr, classify = "Variety", sed = T)

> oatsN.pv <- predict(oats.asr, classify = "Nitrogen", sed = T)

> oatsVN.pv <- predict(oats.asr, classify = "Variety:Nitrogen", sed = T)

The latter returns an object oatsVN.pv with components pvals, sed and avsed: pvals contains
the predicted means for the term defined in the classify argument and sed contains the full
matrix of SEDs for this set of predictions (Variety:Nitrogen here):

> oatsVN.pv$pvals

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use 'average' to move ignored factors into the averaging set.

- The ignored set: Blocks,Wplots

Variety Nitrogen predicted.value std.error status

1 Golden_rain 0.2_cwt 98.50000 9.106977 Estimable

2 Golden_rain 0.4_cwt 114.66667 9.106977 Estimable

3 Golden_rain 0.6_cwt 124.83333 9.106977 Estimable

4 Golden_rain 0_cwt 80.00000 9.106977 Estimable

5 Marvellous 0.2_cwt 108.50000 9.106977 Estimable

6 Marvellous 0.4_cwt 117.16667 9.106977 Estimable

7 Marvellous 0.6_cwt 126.83333 9.106977 Estimable

8 Marvellous 0_cwt 86.66667 9.106977 Estimable

9 Victory 0.2_cwt 89.66667 9.106977 Estimable

10 Victory 0.4_cwt 110.83333 9.106977 Estimable
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11 Victory 0.6_cwt 118.50000 9.106977 Estimable

12 Victory 0_cwt 71.50000 9.106977 Estimable

> oatsVN.pv$sed

12 x 12 Matrix of class "dspMatrix"

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] NA 7.682954 7.682954 7.682954 9.715025 9.715025 9.715025 9.715025 9.715025

[2,] 7.682954 NA 7.682954 7.682954 9.715025 9.715025 9.715025 9.715025 9.715025

[3,] 7.682954 7.682954 NA 7.682954 9.715025 9.715025 9.715025 9.715025 9.715025

[4,] 7.682954 7.682954 7.682954 NA 9.715025 9.715025 9.715025 9.715025 9.715025

[5,] 9.715025 9.715025 9.715025 9.715025 NA 7.682954 7.682954 7.682954 9.715025

[6,] 9.715025 9.715025 9.715025 9.715025 7.682954 NA 7.682954 7.682954 9.715025

[7,] 9.715025 9.715025 9.715025 9.715025 7.682954 7.682954 NA 7.682954 9.715025

[8,] 9.715025 9.715025 9.715025 9.715025 7.682954 7.682954 7.682954 NA 9.715025

[9,] 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 NA

[10,] 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 7.682954

[11,] 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 7.682954

[12,] 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 9.715025 7.682954

[,10] [,11] [,12]

[1,] 9.715025 9.715025 9.715025

[2,] 9.715025 9.715025 9.715025

[3,] 9.715025 9.715025 9.715025

[4,] 9.715025 9.715025 9.715025

[5,] 9.715025 9.715025 9.715025

[6,] 9.715025 9.715025 9.715025

[7,] 9.715025 9.715025 9.715025

[8,] 9.715025 9.715025 9.715025

[9,] 7.682954 7.682954 7.682954

[10,] NA 7.682954 7.682954

[11,] 7.682954 NA 7.682954

[12,] 7.682954 7.682954 NA

The avsed component gives the minimum, mean and maximum SED:

> oatsVN.pv$avsed

min mean max

7.682954 9.160824 9.715025

The average SED is calculated from the average variance of differences and is given as:

> oatsVN.pv$avsed[2]

mean

9.160824
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7.3 Unbalanced nested design

This example illustrates some further aspects of testing fixed effects in linear mixed models. It
differs from the previous split plot example in that it is unbalanced, so more care is required in
assessing the significance of fixed effects.

The experiment was reported by Dempster et al. (1984) and was designed to compare the effect
of three doses of an experimental compound (control, low and high) on the maternal performance
of rats. Thirty female rats (Dams) were randomly split into three groups of 10 and each group
randomly assigned to the three different doses. All pups in each litter were weighed. The litters
differed both in total size and composition of males and females. Thus the additional covariate
littersize was included in the analysis. The differential effect of the compound on male and
female pups was also of interest.

Three litters had to be dropped from the experiment, which meant that one dose had only 7 dams.
The analysis must account for the presence of between dam variation, but must also recognise the
stratification of the experimental units (pups within litters) and the restricted randomisation of the
doses to the dams. An indicative ANOVA decomposition for this experiment is given in Table 7.2.

Table 7.2: Rat data: ANOVA decomposition

stratum decomposition type df or ne

(Intercept) fixed 1
Dams

Dose fixed 2
littersize fixed 1
Dam random 27

Dams:Pups
Sex fixed 1
Dose:Sex fixed 2

error random

The Dose and littersize effects are implicitly tested against the residual dam variation, while
the remaining effects are tested against the residual within litter variation. The asreml() call is:

> asreml.options(gammaPar = TRUE)

> rats.asr <- asreml(weight ~ littersize + Dose + Sex + Dose:Sex, random = ~idv(Dam),

residual = ~idv(units), data = rats)

An abbreviated output from the asreml convergence trace removing iterations 2 to 5 is:

> rats.asr$trace[, (-2:-5)]

1 6 7 8

LogLik 74.2174175 87.2396114 87.2397915 87.2397915

Sigma2 0.1967003 0.1653687 0.1652991 0.1652991

DF 315.0000000 315.0000000 315.0000000 315.0000000
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7.3 Unbalanced nested design

Dam!Dam 0.1000000 0.5827630 0.5867030 0.5866740

units!units 1.0000000 1.0000000 1.0000000 1.0000000

units!R 1.0000000 1.0000000 1.0000000 1.0000000

The tables of estimated variance parameters (from summary()) and Wald tests (from wald()) are:

> summary(rats.asr)$varcomp

component std.error z.ratio bound %ch

Dam!Dam 0.09697668 0.03318630 2.92219 P 0

units!units 0.16529909 NA NA F 0

units!R 0.16529909 0.01367002 12.09209 P 0

> wald(rats.asr, denDF = "default", ssType = "conditional")$Wald

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:21 2019

LogLik Sigma2 DF wall cpu

1 87.2398 0.165300 315 23:23:21 0.0

2 87.2398 0.165300 315 23:23:21 0.0

3 87.2398 0.165300 315 23:23:21 0.0

Wald tests for fixed effects.

Response: weight

Df denDF F.inc F.con Margin Pr

(Intercept) 1 32.0 9049.0 1099.00 0.00000

littersize 1 31.5 28.0 46.25 B 0.00000

Dose 2 23.9 12.2 11.51 A 0.00031

Sex 1 299.8 58.0 57.96 A 0.00000

Dose:Sex 2 302.1 0.4 0.40 B 0.67175

The incremental Wald tests indicate that the interaction between Dose and Sex is not significant.
Since these tests are sequential then the test for the Dose:Sex term is appropriate as it respects
marginality with both the main effects of dose and sex fitted before the inclusion of the interaction.

The conditional F-test helps assess the significance of the other terms in the model. It con-
firms littersize is significant after the other terms, that Dose is significant when adjusted
for littersize and Sex but ignoring Dose.Sex, and that Sex is significant when adjusted for
littersize and Dose but ignoring Dose.Sex. These tests respect marginality to the Dose.Sex

interaction.

A plot of residuals vs fitted values is shown in Figure 7.1:

> plot(rats.asr, formula = resid(.) ~ fitted(.), fun = "xyplot")

Before proceeding we note the possibility of several outliers, in particular unit 66. The weight of this
female rat, within litter 9 is only 3.68, compared to weights of 7.26 and 6.58 for two other female
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7.3 Unbalanced nested design

sibling pups. This weight appears erroneous, but without knowledge of the actual experiment we
retain the observation.
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Figure 7.1: Residual plot for the rat data

We refit the model without the Dose:Sex term.

> asreml.options(gammaPar = TRUE)

> rats2.asr <- asreml(weight ~ littersize + Sex + Dose, random = ~idv(Dam), residual =

~idv(units), data = rats)

> summary(rats2.asr)$varcomp

component std.error z.ratio bound %ch

Dam!Dam 0.09791765 0.03341525 2.930328 P 0

units!units 0.16452411 NA NA F 0

units!R 0.16452411 0.01356055 12.132553 P 0

> ww <- wald(rats2.asr, denDF = "default", ssType = "conditional")
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7.4 Sources of variability in unbalanced data

> ww$Wald

Wald tests for fixed effects.

Response: weight

Df denDF F.inc F.con Margin Pr

(Intercept) 1 32.0 8981.0 1093.00 0.00000000

littersize 1 31.4 27.9 46.43 A 0.00000012

Sex 1 301.7 59.5 58.27 A 0.00000000

Dose 2 24.0 11.4 11.42 A 0.00032833

Note that the variance parameters are re-estimated, though there is little change from the previous
analysis.

The impact of (wrongly) dropping Dam from this model is shown below:

> asreml.options(gammaPar = TRUE)

> rats3.asr <- asreml(weight ~ littersize + Dose + Sex, residual = ~idv(units), data =

rats)

> ww <- wald(rats3.asr, denDF = "default", ssType = "conditional")

> ww$Wald

Wald tests for fixed effects.

Response: weight

Df denDF F.inc F.con Margin Pr

(Intercept) 1 317 47080 3309.0 0.00000e+00

littersize 1 317 68 146.5 A 0.00000e+00

Dose 2 317 61 58.4 A 0.00000e+00

Sex 1 317 25 24.5 A 1.19915e-06

Even if a random term is not ’significant’, it should not be dropped from the model if it represents
a strata of the design as in this case. The impact of deleting Dam on the significance tests for the
fixed effects is substantial and not surprising. This reinforces the importance of preserving the
strata of the design when assessing the significance of fixed effects.

7.4 Sources of variability in unbalanced data

This example illustrates an approach to the analysis of unbalanced data where the main aim is to
determine the sources of variation rather than assess the significance of imposed treatments. The
data are taken from Cox and Snell (1981) and involve an experiment to examine the variability
in the production of car voltage regulators. Standard production of regulators involves two steps:
1) Regulators are taken from the production line and passed to a setting station which adjusts
the regulator to operate within a specified range of voltages, and, 2) from the setting station the
regulator is then passed to a testing station where it is tested and returned if outside the required
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7.4 Sources of variability in unbalanced data

range.

A total of 64 regulators was tested at four testing stations (Teststat). The voltage for individual
regulators was set at a total of 10 setting stations (Setstat). A variable number of regulators
(between 4 to 8) were set at each station. However, each regulator was tested at every testing
station. The asreml() function call is:

voltage <- asreml.read.table("../examples/voltage.csv", header = T, sep = ",")

names(voltage)

> asreml.options(gammaPar = TRUE)

> voltage.asr <- asreml(voltage ~ 1, random = ~Setstat + Setstat:Regulatr + Teststat +

Setstat:Teststat, residual = ~idv(units), data = voltage)

The factor Regulatr numbers the regulators within each setting station. Thus the term
Setstat:Regulatr allows for differential effects of each regulator, while the other terms examine
the effects of the setting and testing stations and possible interaction.

The estimated components of variance are:

> summary(voltage.asr)$varcomp

component std.error z.ratio bound %ch

Teststat 3.287141e-03 3.337459e-03 0.9849231 P 0

Setstat 1.193738e-02 8.811857e-03 1.3546953 P 0

Setstat:Teststat 5.175173e-09 5.323728e-10 9.7209570 B 0

Setstat:Regulatr 3.077791e-02 8.452247e-03 3.6413883 P 0

units!units 5.114166e-02 NA NA F 0

units!R 5.114166e-02 5.260970e-03 9.7209570 P 0

The convergence criterion was satisfied, however, the variance component estimate for the
Setstat:Teststat term has been fixed at the boundary. The default constraint for variance com-
ponents is to ensure that the REML estimate remains positive. If an update for any variance
component results in a negative value then ASReml-R sets that variance component to a small
positive value. If this occurs in subsequent iterations the parameter is fixed at the boundary. The
default parameter constraints (Positive for variance components) can be altered (to Unconstrained,
for example) by changing the constraint code in the initial value list object(s) for random param-
eters, that is, the R.param and G.param arguments to asreml(). These lists are returned in the
asreml object and are best accessed via the function asreml.gammas.ed(). In this example, the
following sequence would achieve this:

> # Edit appropriate parameter code

> asreml.options(gammaPar = TRUE)

> voltage.asr <- asreml(voltage ~ 1, random = ~Setstat + Setstat:Regulatr + Teststat +

Setstat:Teststat, residual = ~idv(units), G.param = temp$G.param, data = voltage)

though it would not generally be recommended for standard analyses.
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7.4 Sources of variability in unbalanced data

> plot(voltage.asr)

includes a residual plot which indicates two unusual data values (Figure 7.2). These values are
successive observations, 210 and 211, respectively, being testing stations 2 and 3 for setting station
J, regulator 2. These observations will be retained for consistency with other analyses conducted
by Cox and Snell (1981).
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Figure 7.2: Residuals vs fitted values for the voltage data

The model omitting the Setstat:Teststat term returns a REML log-likelihood of 203.242 - the
same as the REML log-likelihood for the previous model:

> asreml.options(gammaPar = TRUE)

> voltage2.asr <- asreml(voltage ~ 1, random = ~Setstat + Setstat:Regulatr + Teststat,

residual = ~idv(units), data = voltage)

A summary of the variance components for this model is:

> summary(voltage2.asr)$varcomp

99



7.5 Balanced repeated measures

component std.error z.ratio bound %ch

Teststat 0.003287145 0.003337467 0.9849221 P 0

Setstat 0.011937344 0.008812595 1.3545776 P 0

Setstat:Regulatr 0.030777971 0.008452070 3.6414712 P 0

units!units 0.051141732 NA NA F 0

units!R 0.051141732 0.005260980 9.7209508 P 0

The column labelled z.ratio is calculated to give a guide as to the significance of the variance
components. The statistic is simply the REML estimate of the variance component divided by the
square root of the diagonal element (for each component) of the inverse of the average information
matrix. The diagonal elements of the expected information matrix are the asymptotic variances
of the REML estimates of the variance parameters. These statistics cannot be used to test the
null hypothesis that the variance component is zero. The conclusions using this crude measure are
inconsistent with the conclusions obtained from the REML log-likelihood ratio (Table 7.3).

Table 7.3: REML log-likelihood ratio test for each variance component in the voltage data

term log-likelihood −2× difference P-value

Setstat 200.31 5.864 .0077
Setstat:Regulatr 184.15 38.19 .0000
Teststat 199.71 7.064 .0039

7.5 Balanced repeated measures

The data for this example comes from an experiment conducted at Rothamstead Experimental
Station, UK, by J. Lamptey. It consists of a total of 5 measurements of height (cm) taken on
14 plants. The 14 plants were either diseased or healthy and were arranged in a glasshouse in a
completely random design. Plant heights were measured 1, 3, 5, 7 and 10 weeks after the plants
were placed in the glasshouse. There were 7 plants in each treatment. The data are illustrated in
Figure 7.3.

The following illustrates several repeated measures analyses. For some of these it is convenient to
arrange the data in a multivariate form, with 7 columns containing the plant number, treatment
identification and the 5 heights, respectively, while for other analyses, in particular power models,
it is necessary to expand the data frame in a relational sense so that the response, response names
and a variate for the time of measurement occupy one column each.

The data frame grass is in multivariate form:

grass

Tmt Plant y1 y3 y5 y7 y10

1 MAV 1 21.0 39.7 47.0 53.0 55.0

2 MAV 2 32.0 59.5 63.5 65.0 67.6

3 MAV 3 35.5 54.6 58.0 61.5 61.5

4 MAV 4 33.5 41.0 48.0 57.0 58.0

5 MAV 5 31.5 45.3 62.0 104.0 104.0
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Figure 7.3: Trellis plot of plant height for each of 14 plants

6 MAV 6 27.0 43.3 56.4 74.5 62.0

7 MAV 7 37.0 53.0 63.0 70.3 75.9

8 HC 8 28.5 47.0 54.7 55.5 57.0

9 HC 9 48.0 62.7 106.0 125.5 123.5

10 HC 10 37.5 55.3 63.0 67.3 66.0

11 HC 11 42.0 58.0 102.0 130.5 130.0

12 HC 12 36.5 56.3 97.0 104.0 114.0

13 HC 13 42.0 53.4 102.0 108.0 107.5

14 HC 14 31.5 59.6 106.0 113.5 110.5

while grassUV is in univariate form:

grassUV

Tmt Plant Time HeightID y

1 MAV 1 1 y1 21.0

2 MAV 1 3 y3 39.7
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3 MAV 1 5 y5 47.0

4 MAV 1 7 y7 53.0

5 MAV 1 10 y10 55.0

6 MAV 2 1 y1 32.0

7 MAV 2 3 y3 59.5

8 MAV 2 5 y5 63.5

9 MAV 2 7 y7 65.0

10 MAV 2 10 y10 67.6

11 MAV 3 1 y1 35.5

12 MAV 3 3 y3 54.6

13 MAV 3 5 y5 58.0

14 MAV 3 7 y7 61.5

15 MAV 3 10 y10 61.5

16 MAV 4 1 y1 33.5

17 MAV 4 3 y3 41.0

18 MAV 4 5 y5 48.0

19 MAV 4 7 y7 57.0

20 MAV 4 10 y10 58.0

21 MAV 5 1 y1 31.5

22 MAV 5 3 y3 45.3

23 MAV 5 5 y5 62.0

24 MAV 5 7 y7 104.0

25 MAV 5 10 y10 104.0

26 MAV 6 1 y1 27.0

27 MAV 6 3 y3 43.3

28 MAV 6 5 y5 56.4

29 MAV 6 7 y7 74.5

30 MAV 6 10 y10 62.0

31 MAV 7 1 y1 37.0

32 MAV 7 3 y3 53.0

33 MAV 7 5 y5 63.0

34 MAV 7 7 y7 70.3

35 MAV 7 10 y10 75.9

36 HC 8 1 y1 28.5

37 HC 8 3 y3 47.0

38 HC 8 5 y5 54.7

39 HC 8 7 y7 55.5

40 HC 8 10 y10 57.0

41 HC 9 1 y1 48.0

42 HC 9 3 y3 62.7

43 HC 9 5 y5 106.0

44 HC 9 7 y7 125.5

45 HC 9 10 y10 123.5

46 HC 10 1 y1 37.5

47 HC 10 3 y3 55.3

48 HC 10 5 y5 63.0

49 HC 10 7 y7 67.3

50 HC 10 10 y10 66.0

51 HC 11 1 y1 42.0

52 HC 11 3 y3 58.0

53 HC 11 5 y5 102.0

54 HC 11 7 y7 130.5

55 HC 11 10 y10 130.0

56 HC 12 1 y1 36.5

57 HC 12 3 y3 56.3
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58 HC 12 5 y5 97.0

59 HC 12 7 y7 104.0

60 HC 12 10 y10 114.0

61 HC 13 1 y1 42.0

62 HC 13 3 y3 53.4

63 HC 13 5 y5 102.0

64 HC 13 7 y7 108.0

65 HC 13 10 y10 107.5

66 HC 14 1 y1 31.5

67 HC 14 3 y3 59.6

68 HC 14 5 y5 106.0

69 HC 14 7 y7 113.5

70 HC 14 10 y10 110.5

The focus is on modelling the error variance for the data. Specifically we fit the multivariate
regression model given by

Y = DT +E (7.1)

where Y 14×5 is the matrix of heights, D14×2 is the design matrix, T 2×5 is the matrix of fixed effects
and E14×5 is the matrix of errors. The heights taken on the same plants will be correlated and so
we assume that

var (vec(E)) = I14 ⊗Σ (7.2)

where Σ5×5 is a symmetric positive definite matrix.

The variance models used for Σ are summarised in Table 7.4. They represent some commonly
used models for the analysis of repeated measures data (Wolfinger; 1996). The variance models are
fitted by specifying the appropriate special function in the asreml() call.

The sequence of models given below illustrate some important issues regarding the sort order of
the data. In a standard multivariate analysis (data frame grass) the response is specified as a
matrix and ASReml-R automatically expands the data frame internally to a univariate form in the
order trait nested within units. The factor units is created before this expansion. The data
frame grassUV has been expanded outside ASReml-R in the same order, that is trait nested within
experimental units. In this case ASReml-R cannot sensibly create a correct units factor so a factor
defining the experimental units must already exist - in this case the factor Plant can be used. Note
that the sort order of the data must correspond to the order of appearance of the factors in the
residual formula that defines the experimental units. In the case of the one dimensional power
model, the data must be sorted in the order returned by unique(x) where x is the column in the
data frame containing the distances. In this case ASReml-R checks the sort order and reports an
error if incorrect.

Uniform

asreml.options(gammaPar = TRUE)

grass.asr <- asreml(cbind(y1, y3, y5, y7, y10) ~ trait + Tmt + trait:Tmt, random =

~idv(units), residual = ~id(units):idv(trait), data = grass)

Power
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asreml.options(gammaPar = TRUE)

grass2.asr <- asreml(y ~ Tmt + Time + Tmt:Time, residual = ~id(Plant):expv(Time), data =

grassUV)

Heterogeneous power

grass3.asr <- asreml(y ~ Tmt + Time + Tmt:Time, residual = ~id(Plant):exph(Time), data =

grassUV)

Antedependence

grass4.asr <- asreml(cbind(y1, y3, y5, y7, y10) ~ trait + Tmt + trait:Tmt, residual =

~id(units):ante(trait, 1), data = grass)

In this case the residual specifies a variance matrix so the sigma parameterization is used for estima-
tion, see Section 2.1.1. The default for multivariate analyses is to use the sigma parameterization.

Unstructured

grass5.asr <- asreml(cbind(y1, y3, y5, y7, y10) ~ trait + Tmt + trait:Tmt, residual =

~id(units):us(trait), data = grass)

Table 7.4: Summary of variance models fitted to the plant data

number of REML
model parameters log-likelihood BIC

uniform 2 -196.88 401.95
power 2 -182.98 374.15
heterogeneous power 6 -171.50 367.57
antedependence (order 1) 9 -160.37 357.51
unstructured 15 -158.04 377.50

The split plot in time model can be fitted four ways:

1. by fitting a random units term plus an independent residual using the multivariate data frame.

2. by specifying a cor() variance model for the R-structure, again using the multivariate data
frame;

asreml.options(gammaPar = TRUE)

grass1.asr <- asreml(cbind(y1, y3, y5, y7, y10) ~ trait + Tmt + trait:Tmt, residual =

~id(units):corv(trait), data = grass)

As this residual is specified as a correlation matrix the model is fitted on the gamma scale. The
residual variance is denoted as S2 in the convergence trace.
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7.5 Balanced repeated measures

3. by fitting Plant as a random term plus an independent residual (Time:Plant) using the uni-
variate data frame,

4. by specifying a cor() variance model for the Time:Plant residual term using the univariate
data.

1. and 3. are equivalent as are 2. and 4. The two forms for Σ are given by

Σ = σ21J + σ22I, units (7.3)

Σ = σ2eI + σ2eρ(J − I), cor() (7.4)

It follows that

σ2e = σ21 + σ22

ρ =
σ21

σ21 + σ22
(7.5)

Summaries of the outputs from 1. and 2. (the asreml() calls labelled Uniform and Correlation,
respectively) are given below. The REML log-likelihood is the same for both models and it is easy
to verify that the REML estimates of the variance parameters satisfy (7.5).

summary(grass.asr)$loglik

[1] -196.8768

summary(grass.asr)$varcomp

component std.error z.ratio bound %ch

units!units 159.8161 75.74758 2.109851 P 0

units:trait!trait 126.4946 NA NA F 0

units:trait!R 126.4946 25.82064 4.898972 P 0

summary(grass1.asr)$loglik

[1] -196.8768

summary(grass1.asr)$varcomp

component std.error z.ratio bound %ch

units:trait!R 286.3088841 78.3441796 3.654501 P 0

units:trait!trait!cor 0.5581911 0.1303821 4.281196 U 0

units:trait!trait!var 286.3088841 NA NA F 0

A more plausible model for repeated measures data would allow the correlations to decrease as the
lag increases. The simplest model that accommodates this is the first order autoregressive model.
However, since the heights are not measured at equally spaced time points we use the exp() power
model. The correlation function is given by:

ρ(u) = φu

where u is the time lag is weeks. The variance parameters from this model are:

105



7.5 Balanced repeated measures

summary(grass2.asr)$varcomp

component std.error z.ratio bound %ch

Plant:Time!R 300.9211889 96.38923337 3.121938 P 0

Plant:Time!Time!pow 0.9190407 0.03120443 29.452250 U 0

Plant:Time!Time!var 300.9211889 NA NA F 0

When fitting such models be careful to ensure the scale of the defining variate, Time here, does not
result in an estimate of φ too close to 1. For example, use of days in this example would result in
an estimate for φ of about 0.993.

plot(grass2.asr, formula = resid(.) ~ Plant | Time, fun = "xyplot")

creates a trend plot (Figure 7.4) of residuals against the factors that index the experimental units.
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Figure 7.4: residual ∼ Plant | Time for the exp() variance model for the plant data

The residual plot suggests increasing variance over time. This can be modelled via the exph()

variance function, which models Σ by

Σ = D0.5CD0.5

where D is a diagonal matrix of variances and C is a correlation matrix with elements given by
cij = φ|ti−tj |. Parameter estimates for the Heterogeneous power model are:

summary(grass3.asr)$varcomp
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7.5 Balanced repeated measures

component std.error z.ratio bound %ch

Plant:Time!R 1.0000000 NA NA F 0.0

Plant:Time!Time!pow 0.9071081 0.04128149 21.973724 U 0.0

Plant:Time!Time_1 61.1918427 29.01081243 2.109277 P 0.6

Plant:Time!Time_3 72.6870993 36.24111494 2.005653 P 0.6

Plant:Time!Time_5 309.9358176 140.13966884 2.211621 P 0.4

Plant:Time!Time_7 437.5366349 174.82222681 2.502752 P 0.5

Plant:Time!Time_10 383.2658238 140.53497675 2.727192 P 0.3

Note that ASReml-R fixes the scale parameter to 1 to ensure that the elements of D are identifiable.
The final two models considered are the antedependence model of order 1 and the unstructured
model. Both require as starting values the generates starting gammas of 0.15 for variances and 0.10
for covariances and scales these by 1/2 of the simple variance of the response. This is adequate in
many cases (including this example) but we would generally recommend using the REML estimate
of Σ from a previous model. For example, suitable starting values could be generated from the
heterogeneous power model (grass3.asr) by:

r <- matrix(resid(grass3.asr), nrow = 14, byrow = T)

vcov <- (t(r) %*% r)/12

where 12 is the degrees of freedom in this case.

The antedependence form models Σ by the inverse cholesky decomposition

Σ = UDU ′

where D is a diagonal matrix and U is a unit upper triangular matrix. For an antedependence
model of order q, then lij = 0 for j > i + q − 1. The antedependence model of order 1 has 9
parameters for these data, 5 in D and 4 in U . The call using the default starting values is shown
above.

The antedependence parameter estimates are given below and appear successively for each time,
that is, the element of D and then the row of U :

summary(grass4.asr)$varcomp

component std.error z.ratio bound %ch

units:trait!R 1.000000000 NA NA F 0.0

units:trait!trait_y1:y1 0.026866609 0.011023605 2.437189 U 0.0

units:trait!trait_y3:y1 -0.628374025 0.246035667 -2.553996 U 0.0

units:trait!trait_y3:y3 0.037282432 0.015467375 2.410392 U 0.0

units:trait!trait_y5:y3 -1.491096654 0.586492845 -2.542395 U 0.1

units:trait!trait_y5:y5 0.005996185 0.002467878 2.429692 U 0.0

units:trait!trait_y7:y5 -1.280576604 0.206798510 -6.192388 U 0.0

units:trait!trait_y7:y7 0.007896552 0.003232983 2.442497 U 0.0

units:trait!trait_y10:y7 -0.967807268 0.062828991 -15.403833 U 0.0

units:trait!trait_y10:y10 0.039063461 0.015947580 2.449491 U 0.0

Finally, the estimated components for the unstructured model using default starting values.

summary(grass5.asr)$varcomp
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7.6 Spatial analysis of a field experiment

component std.error z.ratio bound %ch

units:trait!R 1.00000 NA NA F 0

units:trait!trait_y1:y1 37.22619 15.19746 2.449501 P 0

units:trait!trait_y3:y1 23.39345 13.20622 1.771397 P 0

units:trait!trait_y3:y3 41.51952 16.95020 2.449500 P 0

units:trait!trait_y5:y1 51.65238 32.03385 1.612431 P 0

units:trait!trait_y5:y3 61.91690 34.87146 1.775575 P 0

units:trait!trait_y5:y5 259.12143 105.78573 2.449493 P 0

units:trait!trait_y7:y1 70.81131 46.13796 1.534773 P 0

units:trait!trait_y7:y3 57.61452 46.74179 1.232613 P 0

units:trait!trait_y7:y5 331.80679 145.20148 2.285147 P 0

units:trait!trait_y7:y7 551.50690 225.15083 2.449500 P 0

units:trait!trait_y10:y1 73.78571 46.21260 1.596658 P 0

units:trait!trait_y10:y3 62.56905 46.92685 1.333331 P 0

units:trait!trait_y10:y5 330.85060 144.32316 2.292429 P 0

units:trait!trait_y10:y7 533.75583 220.58712 2.419705 P 0

units:trait!trait_y10:y10 542.17548 221.34133 2.449499 P 0

Table 7.5: Summary of Wald statistics for fixed effects for the models fitted to the plant data

model Tmt (df=1) trait:Tmt (df=4)

uniform 9.42 20.40
power 6.85 24.53
heterogeneous power 0.00 19.28
antedependence (order 1) 4.19 15.63
unstructured 1.72 17.86

The antedependence model of order 1 is clearly the more parsimonious model (Table 7.4). There
is a surprising level of discrepancy between models for the Wald tests (Table 7.5). The main effect
of treatment is significant for the uniform, power and antedependence models.

7.6 Spatial analysis of a field experiment

This section illustrates spatial and incomplete block analyses of a field experiment using ASReml-R.
There has been a large amount of interest in developing techniques for the analysis of spatial data
both in the context of field experiments and geostatistical data (Cullis and Gleeson; 1991; Cressie;
1991; Gilmour et al.; 1997, for example). This example illustrates the analysis of so-called regular
spatial data, in which the data is observed on a lattice or regular grid. This is typical of most
small plot designed field experiments. Spatial data is often irregularly spaced, either by design or
because of the observational nature of the study. The techniques we present in the following can
be extended for the analysis of irregularly spaced spatial data, though, larger spatial data-sets may
be computationally challenging, depending on the degree of irregularity or models fitted.

The data appears in Gilmour et al. (1995) and is from a field experiment designed to compare the
performance of 25 varieties of barley. The experiment was conducted at Slate Hall Farm, UK, in
1976 and was designed as a balanced lattice square with 6 replicates laid out in a 10×15 rectangu-
lar grid. Table 7.6 shows the layout of the experiment and the coding of the replicates and lattice
blocks. The columns in the data frame are:
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shf <- asreml.read.table("../examples/shf.csv", header = T, sep = ",")

names(shf)

[1] "Rep" "RowBlk" "ColBlk" "Row" "Column" "Variety" "yield"

Lattice block numbering is typically coded within replicates, however, in this example the lattice
row and column blocks were both numbered from 1 to 30. The terms in the linear model are
therefore simply RowBlk and ColBlk. The factors Row and Column indicate the spatial layout of
the plots.

Table 7.6: Field layout of Slate Hall Farm experiment

Column - Replicate levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
2 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
4 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
5 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
6 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
7 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
8 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
9 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
10 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6

Column - Rowblk levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 11 11 11 11 11 21 21 21 21 21
2 2 2 2 2 2 12 12 12 12 12 22 22 22 22 22
3 3 3 3 3 3 13 13 13 13 13 23 23 23 23 23
4 4 4 4 4 4 14 14 14 14 14 24 24 24 24 24
5 5 5 5 5 5 15 15 15 15 15 25 25 25 25 25
6 6 6 6 6 6 16 16 16 16 16 26 26 26 26 26
7 7 7 7 7 7 17 17 17 17 17 27 27 27 27 27
8 8 8 8 8 8 18 18 18 18 18 28 28 28 28 28
9 9 9 9 9 9 19 19 19 19 19 29 29 29 29 29
10 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30

Column - Colblk levels
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
8 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
9 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Three models are considered: two spatial and the traditional incomplete block for comparative
purposes. In the first model we fit a separable first order autoregressive process to the variance
structure of the plot errors. Gilmour et al. (1997) suggest this is often a useful model to commence
the spatial modelling process. The form of the variance matrix for the plot errors (R-structure) is
given by

σ2Σ = σ2(Σc ⊗Σr) (7.6)

where Σc and Σr are 15 × 15 and 10 × 10 matrix functions of the column (φc) and row (φr)
autoregressive parameters respectively.
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7.6 Spatial analysis of a field experiment

Gilmour et al. (1997) recommend revision of the current spatial model based on the use of diag-
nostics such as the sample variogram of the residuals. This diagnostic and a summary of row and
column residual trends are produced by the varioGram() and plot() methods.

The separable autoregressive error model is fitted by:

asreml.options(gammaPar = TRUE)

barley1.asr <- asreml(yield ~ Variety, residual = ~ar1v(Row):ar1(Column), data = shf)

The REML log-likelihood, random components and Wald statistics from the fit are:

barley1.asr$loglik

[1] -700.3226

summary(barley1.asr)$varcomp

component std.error z.ratio bound %ch

Row:Column!R 3.871303e+04 7.737983e+03 5.002987 P 0.0

Row:Column!Row!cor 4.583949e-01 8.261585e-02 5.548510 U 0.2

Row:Column!Row!var 3.871303e+04 NA NA F 0.0

Row:Column!Column!cor 6.837847e-01 6.330001e-02 10.802284 U 0.0

wald(barley1.asr)

Wald tests for fixed effects.

Response: yield

Terms added sequentially; adjusted for those above.

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 33049749 853.71 < 2.2e-16 ***

Variety 24 12102335 312.62 < 2.2e-16 ***

residual (MS) 38713

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

plot(varioGram(barley1.asr))

plots the sample variogram shown in Figure 7.5.

The iterative sequence has converged to column and row correlation parameters of 0.68378 and
0.45851, respectively. The plot size and orientation is not known and so it is not possible to
ascertain whether these values are spatially sensible. It is generally found that the closer the
plot centroids, the higher the spatial correlation. This is not always the case and if the highest
between plot correlation relates to the larger spatial distance then this may suggest the presence
of extraneous variation (Gilmour et al.; 1997, for example). The plot of the sample variogram of
the residuals is not trimmed and, ignoring the unreliable contribution from extreme lags, appears
in reasonable agreement with the model.
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Figure 7.5: Sample variogram of the AR1×AR1 model for the Slate Hall data

An extension to this model includes a measurement error or nugget effect term:

asreml.options(gammaPar = TRUE)

barley2.asr <- asreml(yield ~ Variety, random = ~idv(units), residual =

~ar1v(Row):ar1(Column), data = shf)

That is, the variance model for the plot errors is now given by

σ2Σ = σ2(Σc ⊗Σr) + ψI150 (7.7)

where ψ is the ratio of nugget variance to error variance (σ2). The results show a significant
improvement in the REML log-likelihood with the inclusion of the nugget effect (Table 7.7).

barley2.asr$loglik

[1] -696.8227

summary(barley2.asr)$varcomp
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7.6 Spatial analysis of a field experiment

component std.error z.ratio bound %ch

units!units 4.859729e+03 1.787790e+03 2.718289 P 0

Row:Column!R 4.577444e+04 1.667775e+04 2.744641 P 0

Row:Column!Row!cor 6.826634e-01 1.022774e-01 6.674629 U 0

Row:Column!Row!var 4.577444e+04 NA NA F 0

Row:Column!Column!cor 8.437903e-01 6.847152e-02 12.323230 U 0

wald(barley2.asr)

Wald tests for fixed effects.

Response: yield

Terms added sequentially; adjusted for those above.

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 11911581 260.22 < 2.2e-16 ***

Variety 24 11235342 245.45 < 2.2e-16 ***

residual (MS) 45774

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The incomplete block analysis (with recovery of inter-block information) is:

barley3.asr <- asreml(yield ~ Variety, random = ~Rep + RowBlk + ColBlk, data = shf)

barley3.asr$loglik

[1] -707.7857

summary(barley3.asr)$varcomp

component std.error z.ratio bound %ch

Rep 4262.685 6876.542 0.619888 P 0.4

RowBlk 15596.231 5089.914 3.064144 P 0.0

ColBlk 14812.688 4866.270 3.043951 P 0.0

units!R 8062.414 1340.612 6.013979 P 0.0

wald(barley3.asr)

Wald tests for fixed effects.

Response: yield

Terms added sequentially; adjusted for those above.

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 9819711 1217.96 < 2.2e-16 ***

Variety 24 1711182 212.24 < 2.2e-16 ***

residual (MS) 8062

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This variance model is not competitive with the preceding spatial models. The models can be
formally compared using the BIC values, for example.
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The Wald statistics for the spatial models are greater than that for the incomplete block analysis
(Table 7.7). We note that the Wald statistic for the spatial model including the nugget effect is
smaller than that for the AR1×AR1 model.

Table 7.7: Summary of models fitted to the Slate Hall data

model REML log-likelihood parameters Wald statistic sed

AR1×AR1 -700.32 3 312.82 59.0
AR1×AR1 + units -696.82 4 245.49 60.5
incomplete block -707.79 4 212.26 62.0

Finally, we predict Variety means for each model using the predict() method. Only the first five
and final three means are reproduced here. The overall SED is the square root of the average
variance of difference between the variety means. The two spatial analyses have a range of SEDs
which may be obtained in matrix form from the sed argument of predict(). Note that all variety
comparisons have the same SED for the balanced lattice square analysis.

barley1.pv <- predict(barley1.asr, classify = "Variety")

barley1.pv$pvals

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use 'average' to move ignored factors into the averaging set.

Variety predicted.value std.error status

1 1 1257.980 64.61807 Estimable

2 2 1501.443 64.98191 Estimable

3 3 1404.987 64.62963 Estimable

4 4 1412.569 64.90628 Estimable

5 5 1514.480 65.59244 Estimable

6 6 1553.458 64.14977 Estimable

7 7 1379.008 64.15830 Estimable

8 8 1475.891 64.45772 Estimable

9 9 1275.473 64.30651 Estimable

10 10 1212.992 63.94961 Estimable

11 11 1342.502 64.50710 Estimable

12 12 1455.240 64.10906 Estimable

13 13 1658.459 63.23078 Estimable

14 14 1298.247 65.26290 Estimable

15 15 1455.522 64.03194 Estimable

16 16 1296.928 64.49421 Estimable

17 17 1499.193 63.17865 Estimable

18 18 1512.119 63.85935 Estimable

19 19 1653.810 64.39608 Estimable

20 20 1674.083 63.97367 Estimable
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21 21 1517.595 64.70899 Estimable

22 22 1605.046 64.38958 Estimable

23 23 1311.488 64.07644 Estimable

24 24 1586.784 64.70404 Estimable

25 25 1592.020 63.59370 Estimable

barley1.pv$avsed

overall

59.05228

barley2.pv <- predict(barley2.asr, classify = "Variety")

barley2.pv$pvals

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use 'average' to move ignored factors into the averaging set.

- The ignored set: units

- Variety is included in this prediction

- (Intercept) is included in this prediction

- units is ignored in this prediction

Variety predicted.value std.error status

1 1 1245.582 97.87602 Estimable

2 2 1516.234 97.86415 Estimable

3 3 1403.985 98.25679 Estimable

4 4 1404.918 98.00437 Estimable

5 5 1471.612 98.37758 Estimable

6 6 1521.938 97.98808 Estimable

7 7 1372.820 98.09363 Estimable

8 8 1453.017 98.61442 Estimable

9 9 1262.331 97.96488 Estimable

10 10 1195.635 98.42021 Estimable

11 11 1328.915 98.22051 Estimable

12 12 1441.677 98.40365 Estimable

13 13 1624.213 98.18592 Estimable

14 14 1299.313 98.18378 Estimable

15 15 1469.594 98.21255 Estimable

16 16 1287.519 97.80526 Estimable

17 17 1492.885 97.96819 Estimable

18 18 1527.493 97.94485 Estimable

19 19 1649.209 98.05410 Estimable

20 20 1646.049 98.04581 Estimable

21 21 1514.751 98.15831 Estimable

22 22 1608.953 98.23694 Estimable

23 23 1316.874 98.05723 Estimable

24 24 1557.522 98.14424 Estimable

25 25 1573.888 97.99743 Estimable
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barley2.pv$avsed

overall

60.51084

barley3.pv <- predict(barley3.asr, classify = "Variety")

barley3.pv$pvals

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use 'average' to move ignored factors into the averaging set.

- The ignored set: Rep,RowBlk,ColBlk

Variety predicted.value std.error status

1 1 1283.587 60.1994 Estimable

2 2 1549.013 60.1994 Estimable

3 3 1420.931 60.1994 Estimable

4 4 1451.855 60.1994 Estimable

5 5 1533.275 60.1994 Estimable

6 6 1527.407 60.1994 Estimable

7 7 1400.728 60.1994 Estimable

8 8 1457.374 60.1994 Estimable

9 9 1298.859 60.1994 Estimable

10 10 1193.224 60.1994 Estimable

11 11 1327.245 60.1994 Estimable

12 12 1483.789 60.1994 Estimable

13 13 1619.043 60.1994 Estimable

14 14 1326.645 60.1994 Estimable

15 15 1498.011 60.1994 Estimable

16 16 1346.148 60.1994 Estimable

17 17 1498.166 60.1994 Estimable

18 18 1592.177 60.1994 Estimable

19 19 1669.551 60.1994 Estimable

20 20 1639.946 60.1994 Estimable

21 21 1493.437 60.1994 Estimable

22 22 1644.381 60.1994 Estimable

23 23 1329.109 60.1994 Estimable

24 24 1546.470 60.1994 Estimable

25 25 1630.629 60.1994 Estimable

barley3.pv$avsed

overall

62.01934
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7.7 Unreplicated early generation variety trial

This example is a further illustration of the approach to the analysis of field trials presented in the
previous section. The data are from an unreplicated field experiment conducted at Tullibigeal in
south-western NSW. The trial was an S1 (early stage) wheat variety evaluation trial and consisted
of 525 test lines which were randomly assigned to plots in a 67 row × 10 column array. There was
a check plot variety every 6 plots within each column. That is, the check variety was sown on rows
1,7,13,. . . ,67 of each column. This variety was numbered 526. A further 6 replicated commercially
available varieties (numbered 527 to 532) were also randomly assigned to plots with between 3 to
5 plots of each. The aim of these trials is to identify and retain the top, say 20%, lines for further
testing. Cullis et al. (1989) considered the analysis of early generation variety trials and presented
a one-dimensional spatial analysis which was an extension of the approach developed by Gleeson
and Cullis (1987). The test line effects are assumed random, while the check variety effects are
considered fixed. This may not be sensible or justifiable for most trials and can lead to inconsistent
comparisons between check varieties and test lines. Given the large amount of replication afforded
to check varieties there will be very little shrinkage irrespective of the realised heritability.

In the following we assume that the variety effect (including both check, replicated and unreplicated
lines) is random. In addition to a one dimensional analysis we consider three further spatial models
for comparison.

wheat <- asreml.read.table("../examples/wheat.csv", header = T, sep = ",")

names(wheat)

[1] "yield" "weed" "Column" "Row" "Variety"

where Variety, Row and Column are factors, yield is the response variate and weed is a covariate.
Note that the data frame is sorted as Column nested within Row.

We begin with a one-dimensional spatial model, which assumes the variance model for the plot
effects within columns is described by a first order autoregressive process.

asreml.options(gammaPar = TRUE)

wheat1.asr <- asreml(yield ~ weed, random = ~idv(Variety), residual =

~ar1v(Row):id(Column), data = wheat)

The REML log-likelihood, random components and Wald statistics from the fit are:

wheat1.asr$loglik

[1] -4239.88

summary(wheat1.asr)$varcomp

component std.error z.ratio bound %ch

Variety!Variety 82788.464274 9.217842e+03 8.981328 P 0.0
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Row:Column!R 86289.992260 9.460971e+03 9.120628 P 0.0

Row:Column!Row!cor 0.672284 4.185343e-02 16.062820 U 0.1

Row:Column!Row!var 86289.992260 NA NA F 0.0

The REML estimate of the autoregressive parameter indicates substantial within column hetero-
geneity.

A two dimensional spatial model is fitted with:

asreml.options(gammaPar = TRUE)

wheat2.asr <- asreml(yield ~ weed, random = ~idv(Variety), residual =

~ar1v(Row):ar1(Column), data = wheat)

wheat2.asr$loglik

[1] -4233.647

summary(wheat2.asr)$varcomp

component std.error z.ratio bound %ch

Variety!Variety 8.810642e+04 8.885330e+03 9.915941 P 0.0

Row:Column!R 8.309418e+04 9.338134e+03 8.898371 P 0.0

Row:Column!Row!cor 6.853206e-01 4.116549e-02 16.647940 U 0.1

Row:Column!Row!var 8.309418e+04 NA NA F 0.0

Row:Column!Column!cor 2.858594e-01 7.390089e-02 3.868146 U 0.1

The change in REML log-likelihood is significant (χ2
1 = 12.46, P < 0.001) with the inclusion of

the autoregressive parameter for Column. The sample variogram of the residuals for the AR1×AR1
model, Figure 7.6, indicates a linear drift from column 1 to column 10. We include a linear regression
coefficient lin(Column) in the model to account for this.

asreml.options(gammaPar = TRUE)

wheat3.asr <- asreml(yield ~ weed + lin(Column), random = ~idv(Variety), residual =

~ar1v(Row):ar1(Column), data = wheat)

wheat3.asr$loglik

[1] -4227.13

summary(wheat3.asr)$varcomp

component std.error z.ratio bound %ch

Variety!Variety 8.897908e+04 8.976971e+03 9.911927 P 0.0

Row:Column!R 7.780305e+04 8.852879e+03 8.788446 P 0.0

Row:Column!Row!cor 6.713910e-01 4.288854e-02 15.654321 U 0.1

Row:Column!Row!var 7.780305e+04 NA NA F 0.0

Row:Column!Column!cor 2.660564e-01 7.541202e-02 3.528037 U 0.1

wald(wheat3.asr)
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Figure 7.6: Sample variogram of the AR1×AR1 model for the Tullibigeal data

Wald tests for fixed effects.

Response: yield

Terms added sequentially; adjusted for those above.

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 551371697 7086.8 < 2.2e-16 ***

weed 1 7156984 92.0 < 2.2e-16 ***

lin(Column) 1 679797 8.7 0.003117 **

residual (MS) 77803

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

wheat3.asr$coefficients$fixed
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Figure 7.7: Sample variogram of the AR1×AR1 + lin(column) model for the Tullibigeal data

The linear regression of column number on yield is significant (Wald statistic = 8.74). The sam-
ple variogram (Figure 7.7) seems more satisfactory, though interpretation of variograms is often
difficult, particularly for unreplicated trials. This is an issue for further research.

The final model includes a nugget effect:
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asreml.options(gammaPar = TRUE)

wheat4.asr <- asreml(yield ~ lin(Column), random = ~idv(Variety) + idv(units), sparse =

~weed, residual = ~ar1v(Row):ar1(Column), data = wheat)

wheat4.asr$loglik

[1] -4221.76

summary(wheat4.asr)$varcomp

component std.error z.ratio bound %ch

Variety!Variety 7.378296e+04 1.041720e+04 7.082798 P 0

units!units 3.044784e+04 8.075220e+03 3.770528 P 0

Row:Column!R 5.472688e+04 1.062781e+04 5.149403 P 0

Row:Column!Row!cor 8.374909e-01 4.487475e-02 18.662854 U 0

Row:Column!Row!var 5.472688e+04 NA NA F 0

Row:Column!Column!cor 3.753740e-01 1.152551e-01 3.256898 U 0

The increase in REML log-likelihood from adding the units term is significant. Predicted variety
means can be obtained from this model using

wheat4.pv <- predict(wheat4.asr, classify = "Variety:Column", levels = list(Column =

5.5))

Note that the predictions are formed at the average value of Column, that is, 5.5.

head(wheat4.pv$pvals, 10)

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use 'average' to move ignored factors into the averaging set.

- weed evaluated at average value of 0.459701

- The ignored set: units

- lin(Column) is included in this prediction

- (Intercept) is included in this prediction

- weed is included in this prediction

- units is ignored in this prediction

Variety Column predicted.value std.error status

1 1 5.5 2915.712 179.3117 Estimable

2 2 5.5 2956.275 178.7801 Estimable

3 3 5.5 2871.296 176.9941 Estimable

4 4 5.5 2985.007 178.7450 Estimable

5 5 5.5 2776.809 179.3482 Estimable

6 6 5.5 2799.750 178.9280 Estimable

7 7 5.5 2843.105 178.6194 Estimable

8 8 5.5 3036.838 178.9558 Estimable

9 9 5.5 2921.700 178.9448 Estimable
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10 10 5.5 2836.501 179.2886 Estimable

Note that the replicated check lines have lower SEs than the unreplicated test lines. There will
also be large differences in SEDs. Rather than obtaining the large table of all SEDs, the prediction
could be done in parts if the interest was to to examine the matrix of pairwise prediction errors of
check varieties, for example.

wheat5.pv <- predict(wheat4.asr, classify = "Variety:Column", levels = list(Variety =

seq(1, 525), Column = 5.5))

wheat6.pv <- predict(wheat4.asr, classify = "Variety:Column", levels = list(Variety =

seq(526, 532), Column = 5.5), sed = T)

head(wheat6.pv$pvals, 20)

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use 'average' to move ignored factors into the averaging set.

- weed evaluated at average value of 0.459701

- The ignored set: units

- lin(Column) is included in this prediction

- (Intercept) is included in this prediction

- weed is included in this prediction

- units is ignored in this prediction

Variety Column predicted.value std.error status

1 526 5.5 2384.515 44.21822 Estimable

2 527 5.5 2695.601 133.45764 Estimable

3 528 5.5 2725.567 112.26135 Estimable

4 529 5.5 2698.358 103.92510 Estimable

5 530 5.5 3008.925 112.30675 Estimable

6 531 5.5 3018.606 112.27111 Estimable

7 532 5.5 3065.982 112.66740 Estimable

head(wheat6.pv$avsed, 20)

min mean max

98.20978 139.90445 165.97547

7.8 Paired Case-Control Study

These data are from an experiment conducted to investigate the tolerance of rice varieties to attack
by the larvae of bloodworms. The data have been kindly provided by Dr. Mark Stevens, Yanco
Agricultural Institute. A full description of the experiment is given by Stevens et al. (1999).
Bloodworms are a significant pest of rice in the Murray and Murrumbidgee irrigation areas and
damage can result in poor establishment and substantial yield loss.
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The experiment commenced with the transplanting of rice seedlings into trays. Each tray contained
a total of 32 seedlings and the trays were paired so that a control tray (no bloodworms) and a
treated tray (bloodworms added) were grown in a controlled environment room for the duration of
the experiment. After this, rice plants were carefully extracted, the root system washed and root
area determined for the tray using an image analysis system described by Stevens et al. (1999).
Two pairs of trays, each pair corresponding to a different variety, were included in each run. A
new batch of bloodworm larvae was used for each run. A total of 44 varieties was investigated with
three replicates of each. Unfortunately the variety concurrence within runs was less than optimal.
Eight varieties occurred with only one other variety, 22 with two other varieties and the remaining
14 with three different varieties.

The following sections present an exhaustive analysis of these data using equivalent univariate and
multivariate techniques. It is convenient to use two data frames, one for each approach. The
univariate data frame has factors Pair, Run, Variety, Tmt and variates rootwt and sqrtroot.
The factor Pair labels pairs of trays (to which varieties are allocated) and Tmt is the two level
bloodworm treatment factor (control/treated):

rice <- asreml.read.table("../examples/rice.txt", header = T)

names(rice)

[1] "Pair" "rootwt" "Run" "sqrtroot" "Tmt" "Variety"

The multivariate data frame contains factors Variety and Run and variates for root weight and
square root of root weight for both the control and exposed treatments (yc, ye, syc, sye respec-
tively):

riceMV <- asreml.read.table("../examples/riceMV.csv", header = T, sep = ",")

names(riceMV)

[1] "Pair" "Run" "Variety" "yc" "ye" "syc" "sye"

A plot of the treated vs the control root area (on the square root scale) for each variety is shown in
Figure 7.8. There is a strong dependence between the treated and control root area, which is not
surprising. The aim of the experiment was to determine the tolerance of varieties to bloodworms
and identify the most tolerant varieties. The definition of tolerance should allow for the fact that
varieties differ in their inherent seedling vigour (Figure 7.8). The initial approach was to regress
the treated root area against the control root area and define the index of vigour as the residual
from this regression. This is clearly inefficient since there is error in both variables. We seek to
determine an index of tolerance from the joint analysis of treated and control root area.

Standard analysis

Preliminary analyses indicated variance heterogeneity so that subsequent analyses were conducted
on the square root scale. The allocation of bloodworm treatments within varieties and varieties
within runs defines a nested block structure of the form:
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Figure 7.8: Rice bloodworm data: Plot of square root of root weight for treated versus control

Run/Variety/Tmt = Run + Run:Variety + Run:Variety:Tmt

= Run + Pair + Pair:Tmt

= Run + Run:Variety + units

There is an additional blocking term, however, due to the fact that the bloodworms within a run are
derived from the same batch of larvae whereas between runs the bloodworms come from different
sources. This defines a block structure of the form:

Run/Tmt/Variety = Run + Run:Tmt + Run:Tmt:Variety

= Run + Run:Tmt + Pair:Tmt

Combining the two provides the full block structure for the design:

Run + Run:Variety + Run:Tmt + Run:Tmt:Variety

= Run + Run:Variety + Run:Tmt + units

= Run + Pair + Run:Tmt + Pair:Tmt
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In line with the aims of the experiment the treatment structure comprises variety and treatment
main effects and treatment by variety interactions.

In the traditional approach the terms in the block structure are regarded as random and the
treatment terms as fixed. The choice of treatment terms as fixed or random depends largely on
the aims of the experiment. The aim of this example is to select the best varieties. The definition
of best is somewhat more complex since it does not involve the single trait sqrt(rootwt) but
rather two traits, namely sqrt(rootwt) in the presence/absence of bloodworms. To minimize
selection bias the Variety main effects and Tmt:Variety interactions are taken as random. The
main effect of treatment is fitted as fixed to allow for the likely scenario that rather than a single
population of treatment by variety effects there are in fact two populations (control and treated)
with a different mean for each. There is evidence of this prior to analysis with the large difference
in mean sqrt(rootwt) for the two groups (14.93 and 8.23 for control and treated respectively).
The inclusion of Tmt as a fixed effect ensures that E-BLUPs of Tmt:Variety effects are shrunk to
the correct mean (treatment means rather than an overall mean).

The model for the data is given by

y = Xτ +Z1u1 +Z2u2 +Z3u3 +Z4u4 +Z5u5 + e (7.8)

where y is a vector of length n = 264 containing the sqrtroot values, τ corresponds to a constant
term and the fixed treatment contrast and u1 . . .u5 correspond to random Variety, Tmt:Variety,
Run, Tmt:Run and Variety:Run effects. The random effects and error are assumed to be indepen-
dent Gaussian variables with zero means and variance structures var (ui) = σ2i Ibi (where bi is the
length of ui, i = 1 . . . 5) and var (e) = σ2In.

The ASReml-R call is:

asreml.options(gammaPar = TRUE)

rice1.asr <- asreml(sqrtroot ~ Tmt, random = ~idv(Variety) + idv(Variety):id(Tmt) +

idv(Run) + idv(Pair) + idv(Run):id(Tmt), residual = ~idv(units), data = rice)

summary(rice1.asr)$loglik

[1] -345.2559

summary(rice1.asr)$varcomp

component std.error z.ratio bound %ch

Variety!Variety 2.3778037 0.7911195 3.0056189 P 0.2

Run!Run 0.3217226 0.5483794 0.5866789 P 0.9

Variety:Tmt!Variety 0.4923122 0.2764192 1.7810344 P 0.0

Pair!Pair 0.9758347 0.3882604 2.5133509 P 0.1

Run:Tmt!Run 1.7478110 0.4793497 3.6462126 P 0.0

units!units 1.3149769 NA NA F 0.0

units!R 1.3149769 0.2974428 4.4209405 P 0.0

wald(rice1.asr)
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Wald tests for fixed effects.

Response: sqrtroot

Terms added sequentially; adjusted for those above.

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 1953.60 1485.65 < 2.2e-16 ***

Tmt 1 617.16 469.33 < 2.2e-16 ***

residual (MS) 1.31

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated variance components from this analysis also appear in column (a) of Table 7.8.
The variance component for the Variety main effects is large. There is evidence of Variety:Tmt
interactions so we may expect some discrimination between varieties in terms of tolerance to blood-
worms.

Given the large difference (p < 0.001) between Tmt means we may wish to allow for heterogeneity
of variance associated with Tmt. Thus we fit a separate Variety:Tmt variance for each level of Tmt
so that instead of assuming var (u2) = σ22I88 we assume

var (u2) =

[
σ22c 0
0 σ22t

]
⊗ I44

where σ22c and σ22t are the Variety:Tmt interaction variances for control and treated respectively.
This model can be fitted using a diagonal variance structure for the treatment part of the inter-
action. We also fit a separate Run:Tmt variance for each level of Tmt and heterogeneity at the
residual level, by including an extra at(Tmt,2):units term. We have chosen level 2 of Tmt as we
expect more variation for the exposed treatment and thus the extra variance component for this
term should be positive.

By default, ASReml-R sets the parameter constraint for variance components to Positive. To allow
for negative components, which may have meaning in this particular example, we must set the
parameter constraints to Unconstrained. The following sequence of calls

• creates default R and G parameter list objects (start.values=T) in temp

• opens the default text editor where the parameter constraints can be changed to U and the
result saved to RG.rice

• fits the model using the G level parameter settings in RG.rice through the G.param argument.

asreml.options(gammaPar = TRUE)

temp.gam <- asreml(sqrtroot ~ Tmt, random = ~idv(Variety) + id(Variety):diag(Tmt) +

idv(Run) + idv(Pair) + id(Run):diag(Tmt) + at(Tmt, 2):units, residual = ~idv(units), data

= rice, start.values = TRUE)$vparameters.table

temp.gam

Component Value Constraint

1 Variety!Variety 0.1 P
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2 Variety:Tmt!Tmt_Control 0.1 P

3 Variety:Tmt!Tmt_Exposed 0.1 P

4 Run!Run 0.1 P

5 Pair!Pair 0.1 P

6 Run:Tmt!Tmt_Control 0.1 P

7 Run:Tmt!Tmt_Exposed 0.1 P

8 at(Tmt, Exposed):units 0.1 P

9 units!R 1.0 P

10 units!units 1.0 F

temp.gam[c(2, 3), "Constraint"] <- c("U", "U")

temp.gam[c(6, 7), "Constraint"] <- c("U", "U")

temp.gam

Component Value Constraint

1 Variety!Variety 0.1 P

2 Variety:Tmt!Tmt_Control 0.1 U

3 Variety:Tmt!Tmt_Exposed 0.1 U

4 Run!Run 0.1 P

5 Pair!Pair 0.1 P

6 Run:Tmt!Tmt_Control 0.1 U

7 Run:Tmt!Tmt_Exposed 0.1 U

8 at(Tmt, Exposed):units 0.1 P

9 units!R 1.0 P

10 units!units 1.0 F

asreml.options(gammaPar = TRUE)

rice2.asr <- asreml(sqrtroot ~ Tmt, random = ~idv(Variety) + id(Variety):diag(Tmt) +

idv(Run) + idv(Pair) + id(Run):diag(Tmt) + at(Tmt, 2):idv(units), residual = ~idv(units),

G.param = temp.gam, data = rice)

summary(rice2.asr)$loglik

[1] -343.2199

summary(rice2.asr)$varcomp

component std.error z.ratio bound %ch

Variety!Variety 2.3341384 0.7761558 3.0073065 P 0.1

Run!Run 0.3193663 0.5435029 0.5876075 P 0.5

Variety:Tmt!Tmt_Control 1.5055897 0.6644957 2.2657628 U 0.2

Variety:Tmt!Tmt_Exposed -0.3721460 0.4563015 -0.8155702 U 0.5

Pair!Pair 0.9875966 0.3811214 2.5912913 P 0.1

Run:Tmt!Tmt_Control 1.3891313 0.6359438 2.1843616 U 0.0

Run:Tmt!Tmt_Exposed 2.2242074 0.7237749 3.0730651 U 0.1

at(Tmt, Exposed):units!units 0.2039961 0.6317102 0.3229267 P 0.3

units!units 1.1565111 NA NA F 0.0

units!R 1.1565111 0.4173686 2.7709588 P 0.0

wald(rice2.asr)

Wald tests for fixed effects.
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Response: sqrtroot

Terms added sequentially; adjusted for those above.

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 1477.33 1277.40 < 2.2e-16 ***

Tmt 1 519.19 448.93 < 2.2e-16 ***

residual (MS) 1.16

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 7.8: Estimated variance components from univariate analyses of bloodworm data. (a) Model
with homogeneous variance for all terms and (b) model with heterogeneous variance for interactions
involving tmt

(a) (b)
homogeneous heterogeneous

source control treated

Variety 2.378 2.333
Variety:Tmt 0.492 1.505 -0.372
Run 0.321 0.319
Run:Tmt 1.748 1.389 2.224
Variety:Run (Pair) 0.976 0.987
Tmt:Pair 1.315 1.156 1.360

REML log-likelihood -345.256 -343.22

The estimated variance components from this analysis are given in column (b) of Table 7.8. There
is no significant variance heterogeneity at the residual or Run:Tmt level. This indicates that the
square root transformation of the data has successfully stabilised the error variance. There is,
however, significant variance heterogeneity for Variety:Tmt interactions with the variance being
much greater for the control group. This reflects the fact that in the absence of bloodworms
the potential maximum root area is greater. Note that the Variety:Tmt interaction variance for
the treated group is negative. The negative component is meaningful (and in fact necessary and
obtained by changing the constraint codes for variance parameters to U as described above) in this
context since it should be considered as part of the variance structure for the combined variety
main effects and treatment by variety interactions. That is,

var (12 ⊗ u1 + u2) =

[
σ21 + σ22c σ21
σ21 σ21 + σ22t

]
⊗ I44 (7.9)

Using the estimates from Table 7.8 this structure is estimated as[
3.84 2.33
2.33 1.96

]
⊗ I44

Thus the variance of the variety effects in the control group (also known as the genetic variance
for this group) is 3.84. The genetic variance for the treated group is much lower (1.96). The
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genetic correlation is 2.33/
√

3.84× 1.96 = 0.85 which is strong, supporting earlier indications of
the dependence between the treated and control root area (Figure 7.8).

A multivariate approach

In this simple case in which the variance heterogeneity is associated with the two level factor Tmt,
the analysis is equivalent to a bivariate analysis in which the two traits correspond to the two levels
of Tmt, namely sqrtroot for control and treated. The model for each trait is given by

yj = Xτ j +Zvuvj +Zrurj + ej (j = c, t) (7.10)

where yj is a vector of length n = 132 containing the sqrtroot values for variate j (j = c for
control and j = t for treated), τ j corresponds to a constant term and uvj and urj correspond to
random variety and run effects. The design matrices are the same for both traits. The random
effects and error are assumed to be independent Gaussian variables with zero means and variance
structures var

(
uvj
)

= σ2vjI44, var
(
urj
)

= σ2rjI66 and var (ej) = σ2j I132. The bivariate model can
be written as a direct extension of (7.10), namely

y = (I2 ⊗X) τ + (I2 ⊗Zv)uv + (I2 ⊗Zr)ur + e∗ (7.11)

where y = (y′c,y
′
t)
′, uv =

(
u′vc ,u

′
vt

)′
, ur =

(
u′rc ,u

′
rt

)′
and e∗ = (e′c, e

′
t)
′.

There is an equivalence between the effects in this bivariate model and the univariate model of
(7.8). The variety effects for each trait (uv in the bivariate model) are partitioned in (7.8) into
variety main effects and tmt.variety interactions so that uv = 12 ⊗ u1 + u2. There is a similar
partitioning for the run effects and the errors (Table 7.9).

Table 7.9: Equivalence of random effects in bivariate and univariate analyses

bivariate univariate
effects (model 7.11) (model 7.8)

trait:Variety uv 12 ⊗ u1 + u2

trait:Run ur 12 ⊗ u3 + u4

Pair:trait e∗ 12 ⊗ u5 + e

In addition to the assumptions in the models for individual traits (7.10), the bivariate analysis
involves the assumptions cov (uvc)u

′
vt = σvctI44, cov (urc)u

′
rt = σrctI66 and cov (ec) e

′
t = σctI132.

Thus random effects and errors are correlated between traits. So, for example, the variance matrix
for the variety effects for each trait is given by

var (uv) =

[
σ2vc σvct
σvct σ2vt

]
⊗ I44

This unstructured form for trait:Variety in the bivariate analysis is equivalent to the Variety

main effect plus heterogeneous Variety:Tmt interaction variance structure (7.9) in the univariate
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analysis. Similarly the unstructured form for trait:Run is equivalent to the Run main effect
plus heterogeneous Run:Tmt interaction variance structure. The unstructured form for the errors
(Pair:trait) in the bivariate analysis is equivalent to the Pair plus heterogeneous error (Pair:Tmt)
variance in the univariate analysis.

The ASReml-R call is:

riceMV.asr <- asreml(cbind(syc, sye) ~ trait, random = ~us(trait):id(Variety) +

us(trait):id(Run), residual = ~id(units):us(trait), data = riceMV)

Warning in asreml(cbind(syc, sye) ~ trait, random = ~us(trait):id(Variety) + : Some components

changed by more than 1% on the last iteration.

summary(riceMV.asr)$loglik

[1] -343.22

summary(riceMV.asr)$varcomp

component std.error z.ratio bound %ch

trait:Variety!trait_syc:syc 3.8370236 1.1041043 3.4752367 P 0.3

trait:Variety!trait_sye:syc 2.3317436 0.7741058 3.0121769 P 0.3

trait:Variety!trait_sye:sye 1.9598665 0.7268965 2.6962112 P 0.3

trait:Run!trait_syc:syc 1.7090708 0.6541103 2.6128176 P 0.3

trait:Run!trait_sye:syc 0.3207441 0.5443446 0.5892299 P 1.7

trait:Run!trait_sye:sye 2.5450260 0.7965487 3.1950665 P 0.2

units:trait!R 1.0000000 NA NA F 0.0

units:trait!trait_syc:syc 2.1435663 0.4820833 4.4464646 P 0.0

units:trait!trait_sye:syc 0.9870784 0.3809549 2.5910636 P 0.1

units:trait!trait_sye:sye 2.3471096 0.5073875 4.6258716 P 0.0

wald(rice2.asr)

Wald tests for fixed effects.

Response: sqrtroot

Terms added sequentially; adjusted for those above.

Df Sum of Sq Wald statistic Pr(Chisq)

(Intercept) 1 1477.33 1277.40 < 2.2e-16 ***

Tmt 1 519.19 448.93 < 2.2e-16 ***

residual (MS) 1.16

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The resultant REML log-likelihood is identical to that of the heterogeneous univariate analysis
(column (b) of Table 7.8). The estimated variance parameters are summarised in Table 7.10.

Predicted variety means are obtained from:

riceMV.pv <- predict(riceMV.asr, classify = "trait:Variety")
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7.8 Paired Case-Control Study

Table 7.10: Estimated variance components from bivariate analysis of bloodworm data

control treated
source variance variance covariance

us(trait):Variety 3.84 1.96 2.33
us(trait):Run 1.71 2.54 0.32
Pair:us(trait) 2.14 2.35 0.99

head(riceMV.pv$pvals, 20)

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use 'average' to move ignored factors into the averaging set.

- The ignored set: Run

Variety trait predicted.value std.error status

1 AliCombo syc 14.953221 0.9180989 Estimable

2 AliCombo sye 7.994086 0.7993077 Estimable

3 Amaroo syc 16.161246 0.9181010 Estimable

4 Amaroo sye 8.481302 0.7992850 Estimable

5 Balilla syc 14.420180 0.9185728 Estimable

6 Balilla sye 8.230838 0.7995129 Estimable

7 Bluebelle syc 13.103200 0.9309795 Estimable

8 Bluebelle sye 6.629743 0.8062304 Estimable

9 Bogan syc 15.768252 0.9548615 Estimable

10 Bogan sye 8.007108 0.8190104 Estimable

11 C22 syc 16.667976 0.9180998 Estimable

12 C22 sye 8.954416 0.7993082 Estimable

13 Calrose syc 15.865773 0.9179556 Estimable

14 Calrose sye 9.506738 0.7992441 Estimable

15 Cent.Patna231 syc 12.771980 0.9299189 Estimable

16 Cent.Patna231 sye 6.767878 0.8056707 Estimable

17 Chiyohikari syc 17.339381 0.9300733 Estimable

18 Chiyohikari sye 9.643430 0.8057379 Estimable

19 Dawn syc 12.209055 0.9841713 Estimable

20 Dawn sye 6.540125 0.8412630 Estimable

These predictions are on the square root scale; it is straightforward to back-transform the predicted
means to the original scale of measurement. Approximate standard errors on the original scale can
be calculated from a Taylor series approximation. That is, if x is a random variable with E(x) = θ,
and y = g(x) is some function of x, then var(y) = (dy/dx)2θvar(x). See Kendall and Stuart (1969)
pp 231, for example. In this case, g(x) = x2 and g′(x) = dy/dx = 2x. The following code calculates
the transformed predictions and approximate standard errors:

pv <- riceMV.pv$pvals

pv$rootwt <- pv$predicted.value^2
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7.8 Paired Case-Control Study

pv$approxSE <- sqrt(4 * pv$predicted.value^2 * pv$std.error^2)

pv$est.status <- NULL

head(pv, 20)

Notes:

- The predictions are obtained by averaging across the hypertable

calculated from model terms constructed solely from factors in

the averaging and classify sets.

- Use 'average' to move ignored factors into the averaging set.

- The ignored set: Run

Variety trait predicted.value std.error status rootwt approxSE

1 AliCombo syc 14.953221 0.9180989 Estimable 223.59883 27.45707

2 AliCombo sye 7.994086 0.7993077 Estimable 63.90540 12.77947

3 Amaroo syc 16.161246 0.9181010 Estimable 261.18589 29.67531

4 Amaroo sye 8.481302 0.7992850 Estimable 71.93248 13.55796

5 Balilla syc 14.420180 0.9185728 Estimable 207.94158 26.49197

6 Balilla sye 8.230838 0.7995129 Estimable 67.74670 13.16132

7 Bluebelle syc 13.103200 0.9309795 Estimable 171.69384 24.39762

8 Bluebelle sye 6.629743 0.8062304 Estimable 43.95349 10.69020

9 Bogan syc 15.768252 0.9548615 Estimable 248.63777 30.11299

10 Bogan sye 8.007108 0.8190104 Estimable 64.11378 13.11581

11 C22 syc 16.667976 0.9180998 Estimable 277.82144 30.60573

12 C22 sye 8.954416 0.7993082 Estimable 80.18157 14.31468

13 Calrose syc 15.865773 0.9179556 Estimable 251.72274 29.12815

14 Calrose sye 9.506738 0.7992441 Estimable 90.37807 15.19641

15 Cent.Patna231 syc 12.771980 0.9299189 Estimable 163.12346 23.75381

16 Cent.Patna231 sye 6.767878 0.8056707 Estimable 45.80418 10.90536

17 Chiyohikari syc 17.339381 0.9300733 Estimable 300.65412 32.25379

18 Chiyohikari sye 9.643430 0.8057379 Estimable 92.99574 15.54015

19 Dawn syc 12.209055 0.9841713 Estimable 149.06102 24.03160

20 Dawn sye 6.540125 0.8412630 Estimable 42.77323 11.00393

Interpretation of results

Recall that the primary interest is varietal tolerance to bloodworms. This could be defined in
various ways: One option is to consider the regression implicit in the variance structure for the
trait by variety effects. The variance structure can arise from a regression of treated variety effects
on control effects, namely

uvt = βuvc + ε

where the slope β = σvct/σ
2
vc .

Tolerance can be defined in terms of the deviations from regression, ε. Varieties with large positive
deviations have greatest tolerance to bloodworms. Note that this is similar to the original approach
except that the regression has been conducted at the genotypic rather than the phenotypic level.
In Figure 7.9 the E-BLUPs for treated have been plotted against the E-BLUPs for control for each
variety and the fitted regression line (slope = 0.61) has been drawn. Varieties with large positive
deviations from the regression line include YRK3, Calrose, HR19 and WC1403.
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Figure 7.9: E-BLUPs for treated plotted against E-BLUPs for control

An alternative definition of tolerance is the simple difference between treated and control E-BLUPs
for each variety, namely δ = uvc −uvt . Unless β = 1 the two measures ε and δ have very different
interpretations. The key difference is that ε is a measure which is independent of inherent vigour
whereas δ is not. To see this consider

cov (ε)u′vc = cov (uvt − βuvc)u′vc

=

(
σvct −

σvct
σ2vc

σ2vc

)
I44

= 0

whereas

cov (δ)u′vc = cov (uvc − uvt)u′vc
=

(
σ2vc − σvct

)
I44
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Figure 7.10: Estimated deviations from regression of treated on control for each variety plotted
against estimate for control

The independence of ε and uvc and dependence between δ and uvc is clearly illustrated in Figures
7.10 and 7.11. In this example the two measures have provided very different rankings of the
varieties. The choice of tolerance measure depends on the aim of the experiment. In this experiment
the aim was to identify tolerance which is independent of inherent vigour so the deviations from
regression is preferred.

7.9 Balanced longitudinal data - random coefficients and cubic smooth-
ing splines

This section illustrates the use of random coefficients and cubic smoothing splines for the analysis
of balanced longitudinal data.

The implementation of cubic smoothing splines in ASReml-R is based on the mixed model formu-
lation of Verbyla et al. (1999). More recently the methodology has been extended so that the user
can specify knot points; in the original approach the knot points were taken to be the ordered set
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Figure 7.11: Estimated difference between control and treated for each variety plotted against
estimate for control

of unique values of the explanatory variable. The specification of knot points is particularly useful
if the number of unique values in the explanatory variable is large, or if units are measured at
different times.

These data were originally reported by Draper and Smith (1998, ex24N, p559) and have recently
been re-analysed by Pinheiro and Bates (2000, p338). The data are trunk circumferences (in
millimetres) of each of 5 trees taken at 7 times (Figure 7.12). All trees were measured at the same
time so that the data are balanced. The aim of the study is unclear, though both previous analyses
involved modelling the overall growth curve, accounting for the obvious variation in both level and
shape between trees.

Pinheiro and Bates (2000) used a nonlinear mixed effects modelling approach, in which they mod-
elled the growth curves by a three parameter logistic function of age:

y =
φ1

1 + exp [−(x− φ2)/φ3]
(7.12)
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7.9 Balanced longitudinal data

where y is the trunk circumference, x is the tree age in days since December 31 1968, φ1 is the
asymptotic height, φ2 is the inflection point or the time at which the tree reaches 0.5φ1, φ3 is the
time elapsed between trees reaching half and about 3/4 of φ1.
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Figure 7.12: Trellis plot of trunk circumference (mm) for each tree against age in days since 1
December 1968.

The data frame orange contains:

orange <- asreml.read.table("../examples/orange.csv", header = T, sep = ",")

names(orange)

[1] "Tree" "x" "circ" "Season"

where Tree is a factor with 5 levels, x is tree age in days since 31 December 1968, circ is the trunk
circumference and Season is a factor with two levels, Spring and Autumn. The factor Season was
included after noting that tree age spans several years and if converted to day of year, measurements
were taken in either April/May (Spring) or September/October (Autumn).
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7.9 Balanced longitudinal data

Initially we restrict the dataset to tree 1 to demonstrate fitting cubic splines in ASReml-R. The
model includes the intercept and linear regression of trunk circumference on x and an additional
random term spl(x) which includes a random term with a special design matrix with 7 − 2 = 5
columns which relate to the vector, δ whose elements δi, i = 2, . . . , 6 are the second differentials of
the cubic spline at the knot points. The second differentials of a natural cubic spline are zero at
the first and last knot points (Green and Silverman; 1994).

asreml.options(gammaPar = TRUE)

orange.asr <- asreml(circ ~ x, random = ~spl(x), residual = ~idv(units), knot.points =

list(x = c(118, 484, 664, 1004, 1231, 1372, 1582)), data = orange, subset = Tree == 1)

Warning in asreml(circ ~ x, random = ~spl(x), residual = ~idv(units), knot.points = list(x

= c(118, : Some components changed by more than 1% on the last iteration.

orange.asr$trace

1 2 3

LogLik -20.90425 -20.90127049 -20.90127049

Sigma2 48.46981 49.15204735 49.15204735

DF 5.00000 5.00000000 5.00000000

spl(x) 0.10000 0.09102007 0.07535652

units!units 1.00000 1.00000000 1.00000000

units!R 1.00000 1.00000000 1.00000000

In this example the spline knot points are specifically given in the knot.points argument. These
extra points have no effect in this case as they are the seven ages existing in the data file. In this
instance the analysis would be the same if the knot.points argument was omitted.

summary(orange.asr)$varcomp

component std.error z.ratio bound %ch

spl(x) 3.703927 10.93709 0.3386573 P 17.2

units!units 49.152047 NA NA F 0.0

units!R 49.152047 36.83725 1.3343028 P 0.0

wald(orange.asr, denDF = "default")

Model fitted using the gamma parameterization.

ASReml 4.1.0 Wed Mar 20 23:23:29 2019

LogLik Sigma2 DF wall cpu

1 -20.8998 50.5242 5 23:23:29 0.0

2 -20.8997 50.4031 5 23:23:29 0.0

3 -20.8996 50.1660 5 23:23:29 0.0

$Wald

Wald tests for fixed effects.

Response: circ

Df denDF F.inc Pr

(Intercept) 1 3.5 1383.0 0.00001093
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x 1 3.5 217.7 0.00027591

$stratumVariances

df Variance spl(x) units!R

spl(x) 1.487218 97.20763 11.91578 1

units!R 3.512782 50.16598 0.00000 1

Predicted values of the spline curve at nominated points can be obtained by:

orange.pv <- predict(orange.asr, classify = "x", design.points = list(x = seq(150, 1500,

50)))

The design.points argument adds the nominated points to the design matrix for prediction
purposes (Figure 7.13). Note that design.points could have been included in the call to as-
reml.options() instead of in predict(). If omitted from either predict() or asreml.options() a
default set of points for prediction purposes would have been generated. The REML estimate of
the smoothing constant and the fitted cubic smoothing spline (Figure 7.13) indicate there is some
nonlinearity. The four points below the line were the spring measurements.

An analysis of variance decomposition for the full dataset is given in Table 7.11, following Verbyla
et al. (1999).

Table 7.11: ANOVA decomposition for the orange data

stratum decomposition type df or ne

(Intercept) 1 f 1
Age

x f 1
spl(x) r 5
residual r 7

Tree
Tree rc 5

Age:Tree
x:Tree rc 5
spl(x):Tree r 25

error r

An overall spline is included as well as tree deviation splines. We note that the intercept and slope
for the tree deviation splines are assumed to be random effects. This is consistent with Verbyla
et al. (1999). In this sense the tree deviation splines play a role in modelling the conditional curves
for each tree and variance modelling. The intercept and slope for each tree are included as random
coefficients (denoted by rc in Table 7.11). Thus, if U5×2 is the matrix of intercepts (column 1) and
slopes (column 2) for each tree, then we assume that

var (vec(U)) = Σ⊗ I5
where Σ is a 2×2 symmetric positive definite matrix. Non smooth variation can be modelled at the
overall mean (across trees) level and this is achieved by including the factor dev(x) as a random
term. The full model is:
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Figure 7.13: Fitted cubic smoothing spline for tree 1

asreml.options(gammaPar = TRUE)

orange1.asr <- asreml(circ ~ x, random = ~str(~Tree + x:Tree, ~diag(2):id(5)) + spl(x) +

spl(x):id(Tree) + idv(dev(x)), residual = ~idv(units), knot.points = list(x = c(118, 484,

664, 1004, 1231, 1372, 1582)), data = orange)

Table 7.12 presents the sequence of fitted models. We stress the importance of model building in
these settings, where we generally commence with relatively simple variance models and update
to more complex variance models if appropriate. Note that the REML log-likelihoods for models 1
and 2 are comparable and likewise for models 3 to 6. The REML log-likelihoods are not comparable
between these groups because of the inclusion of the fixed Season factor.

We begin by modelling the variance matrix for the intercept and slope for each tree, Σ, as a diagonal
matrix as there is no point including a covariance component between the intercept and slope if
the variance component(s) for one (or both) is zero. Model 1 also does not include a non-smooth
component at the overall level (that is, dev(x)).

The ASReml-R call and variance components for model 1 are:
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Table 7.12: Sequence of models fitted to the orange data

model
term 1 2 3 4 5 6

Tree y y y y y y
x:Tree y y y y y y
cov(Tree, x:Tree) n n n n n y
spl(x) y y y y n y
spl(x):Tree y y y n y y
dev(x) n y y n n n
Season n n y y y y

REML log-likelihood -97.78 -94.07 -87.95 -91.22 -90.18 -87.43

orange1.asr <- asreml(circ ~ x, random = ~str(~Tree + x:Tree, ~diag(2):id(5)) + spl(x) +

spl(x):id(Tree), residual = ~id(units), knot.points = list(x = c(118, 484, 664, 1004,

1231, 1372, 1582)), data = orange)

summary(orange1.asr)$varcomp

component std.error z.ratio bound %ch

Tree+x:Tree!diag(2)_1 3.048865e+01 2.457266e+01 1.240755 P 0.4

Tree+x:Tree!diag(2)_2 5.980326e-04 4.240080e-04 1.410428 P 0.3

spl(x) 6.398248e+02 4.130439e+02 1.549048 P 0.3

spl(x):Tree 7.101353e+00 4.915670e+00 1.444636 P 0.7

units!R 6.374557e+00 3.658904e+00 1.742204 P 0.0

The fitted curves from this model are shown in Figure 7.14. The fit is unacceptable because the
spline has picked up too much curvature, suggesting there may be systematic non-smooth variation
at the overall level. This can be formally examined by including the dev(x) term as a random
effect.

Model 2 increased the REML log-likelihood by 3.70 (P < 0.05) with the spl(x) smoothing constant
approaching the boundary. The Season factor provides a possible explanation. When included in
Model 3, Season has a Wald statistic of 107.3 (P < 0.01) and dev(x) becomes bounded. The spring
measurements are lower than the autumn measurements so growth is slower in winter. Models 4
and 5 successively examined each term, indicating that both smoothing constants are significant.
Model 6 includes the covariance parameter between the intercept and slope for each tree; this
ensures that the model will be translation invariant. This model requires care in the choice of
starting values. The ASReml-R call, illustrating an alternative method for specifying initial values,
and the fitted components for model 6 are:

orange6.asr <- asreml(circ ~ x + Season, random = ~str(~Tree + x:Tree, ~us(2, init = c(5,

-0.01, 1e-04)):id(5)) + spl(x) + spl(x):id(Tree), residual = ~id(units), knot.points =

list(x = c(118, 484, 664, 1004, 1231, 1372, 1582)), data = orange)
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Figure 7.14: Plot of fitted cubic smoothing spline for model 1

summary(orange1.asr)$varcomp

component std.error z.ratio bound %ch

Tree+x:Tree!diag(2)_1 3.048865e+01 2.457266e+01 1.240755 P 0.4

Tree+x:Tree!diag(2)_2 5.980326e-04 4.240080e-04 1.410428 P 0.3

spl(x) 6.398248e+02 4.130439e+02 1.549048 P 0.3

spl(x):Tree 7.101353e+00 4.915670e+00 1.444636 P 0.7

units!R 6.374557e+00 3.658904e+00 1.742204 P 0.0

The fitted values for individual trees (adjusted for Season) from model 6 together with a marginal
prediction and approximate confidence intervals (2× standard error of prediction) are shown in
Figure 7.15. The conclusions from this analysis are quite different from those obtained by the
nonlinear mixed effects analysis. The individual curves for each tree are not convincingly modelled
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Figure 7.15: Fitted values adjusted for Season and approximate confidence intervals for model 6

by a logistic function. There is a distinct pattern in the residuals shown in Pinheiro and Bates
(2000, p340), which is consistent for all trees; this is modelled here by the Season term.
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A Some technical details about model
fitting in ASReml-R

A.1 Sparse versus dense

The terms in the linear mixed model are partitioned into two sets; a dense set and a sparse set. The
partition is defined by the fixed formula; all terms in the fixed formula are included in the dense set
while terms in the random and sparse formulae are included in the sparse set. The inverse coefficient
matrix is fully formed for the terms in the dense set which are fitted using dense equations. The
inverse coefficient matrix is only partially formed for terms in the sparse set. Typically, the sparse
set is large resulting in savings in memory and computing. A consequence is that the variance
matrix of the BLUEs and BLUPs is only available for terms in the dense portion.

A.2 Ordering of terms in ASReml-R

Solutions for the fixed and random effects in linear mixed model analysis using ASReml-R are
obtained by solving the corresponding mixed model equations in the numerical routines (Gilmour
et al.; 1995). The sparse equations are processed first after being reordered to retain sparsity
during solution. If keep.order=F, the remaining equations are processed with main effects before
interactions and low order interactions before higher ones so that normal marginality of terms is
achieved. The order of effects in the solution vector(s) in the returned object reflects the order of
processing.

A.3 Aliasing and singularities

A singularity occurs when there is either

• a linear dependence in the model and therefore no information left to estimate the corre-
sponding effect, or

• no data for that fixed effect,

• no data for a simple (uncorrelated) random effect.

The REML routines handle singularities by deleting the equations in question. Since the equations
are solved from the bottom up, the first level (and hence the last level processed) of a factor is
the one that will be declared singular and dropped from the model. The number of singularities is
returned in the asreml object (nsing) and reported during the iterative process. Solutions that are
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zero and have NA for their standard error are the singular effects.

Warning: Singularities in the sparse terms of the model may change with changes in the random
terms included in the model. If this happens it will mean that changes in the REML log-likelihood
are not valid for testing the changes made to the random model. A likelihood ratio test is not valid
if the fixed model has changed.

A.3.1 Examples of aliasing

The sequence of examples in Table A.1 are presented to facilitate an understanding of over-
parameterised models. It is assumed that Var is defined with 4 levels, Trt with 3 levels and Rep
with 3 levels and that all Var:Trt combinations are present in the data.

Table A.1: Examples of aliasing

model number of sin-
gularities

description

fixed = y ∼ -1 + Var,
random = ∼ Rep

0 Var fully fitted

fixed = y ∼ Var,
random = ∼ Rep

1 first level of Var dropped

fixed = y ∼ -1 + Var + Trt,
random = ∼ Rep

1 Var fully specified, first level of Trt dropped
from the models

fixed = y ∼ Var + Trt + Var:Trt,
random = ∼ Rep

8 first level of both Var and Trt dropped from
the model, together with subsequent inter-
actions

fixed = ∼ Var + Trt,
random = ∼ Rep,
sparse = ∼ Var:Trt

8 Var:Trt fully specified; (Intercept), Var and
Trt completely singular and dropped from
the model
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B Available variance models

Table B.1 presents the full range of variance models available in ASReml-R with their algebraic
descriptions and numbers of parameters. In most cases the algebraic form is for the correlation
model (id() to agau()). However, the models from diag() onwards are additional heterogeneous
variance models.

Recall from Section 4.2 the algebraic forms of the homogeneous and heterogeneous variance models
are determined as follows. Let C (ω×ω) = [Cij ] be the correlation matrix for a particular correlation
model. If Σ (ω×ω) is the corresponding homogeneous variance matrix then

Σ = σ2C

and has just one more parameter than the correlation model. For example, the homogeneous
variance model corresponding to the id() correlation model has variance matrix Σ = σ2Iω (specified

idv() in the ASReml-R function call, see below) and one parameter. Likewise, if Σ
(ω×ω)
h is the

heterogeneous variance matrix corresponding to C, then

Σh = DCD

where D (ω×ω) = diag (σi) . In this case there are an additional ω parameters. For example, the
ASReml-R function for the heterogeneous variance model corresponding to id() variance model has
variance matrix

Σh =


σ2

1
0 . . . 0

0 σ2
2

. . . 0
...

...
. . .

...
0 0 . . . σ2ω


(specified idh() in the asreml() call, see below) and involves the ω parameters σ2

1
. . . σ2ω.
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Table B.1: Details of the available variance models

function
name

description algebraic
form

number of parameters

corr hom het
variance variance

Correlation models

id() identity Cii = 1, Cij = 0, i 6= j 0 1 ω

ar1() 1
st

order
autoregressive

Cii = 1, Ci+1,i = φ1

Cij = φ1Ci−1,j , i > j + 1

|φ1 | < 1

1 2 1 + ω

ar2() 2
nd

order
autoregressive

Cii = 1,

Ci+1,i = φ1/(1− φ2)

Cij = φ1Ci−1,j +φ2Ci−2,j , i > j+1

|φ1 ± φ2 | < 1,

|φ1 | < 1, |φ2 | < 1

2 3 2 + ω

ar3() 3
rd

order
autoregressive

Cii = 1, Ω = 1− φ2 − φ3(φ1 + φ3),

Ci+1,i = (φ1 + φ2φ3)/Ω,

3 4 3 + ω

Ci+2,i = (φ1(φ1 + φ3) + φ2(1− φ2))/Ω,

Cij = φ1Ci−1,j + φ2Ci−2,j + φ3Ci−3,j , i > j + 2

|φ1 | < (1− φ2), |φ2 | < 1, |φ3 | < 1

sar() symmetric
autoregressive

Cii = 1,

Ci+1,i = φ1/(1 + φ2
1
/4)

Cij = φ1Ci−1,j − φ2
1
/4 Ci−2,j ,

i > j + 1

|φ1 | < 1

1 2 1 + ω

sar2() constrained
autoregressive 3
used for
competition

as for AR3 using

φ1 = γ1 + 2γ2 ,

φ2 = −γ2(2γ1 + γ2),

φ3 = γ1γ
2
2
,

2 3 2 + ω

ma1() 1
st

order
moving average

Cii = 1,

Ci+1,i = −θ1/(1 + θ2
1
)

Cji = 0, j > i+ 2

|θ1 | < 1

1 2 1 + ω

ma2() 2
nd

order
moving average

Cii = 1,

Ci+1,i = −θ1(1− θ2)/(1 + θ2
1

+ θ2
2
)

Ci+2,i = −θ2/(1 + θ2
1

+ θ2
2
)

Cji = 0, j > i+ 2

θ2 ± θ1 < 1

|θ1 | < 1, |θ2 | < 1

2 3 2 + ω
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B Available variance models

Details of the available variance models

function
name

description algebraic
form

number of parameters

corr hom het
variance variance

arma() autoregressive
moving average

Cii = 1,

Ci+1,i = (θ − φ)(1− θφ)/(1 +

θ2 − 2θφ)

Cji = φCj−1,i , j > i+ 1

|θ| < 1, |φ| < 1

2 3 2 + ω

cor() uniform
correlation

Cii = 1, Cij = θ, i 6= j 1 2 1 + ω

corb() banded
correlation

Cii = 1

Ci+j,i = φj , 1 ≤ j < ω

|φj | < 1

j j + 1 j + ω

corg() general
correlation
corgh() = us()

Cii = 1

Cij = φij , i 6= j

|φij | < 1

ω(ω−1)
2

ω(ω−1)
2

+1 ω(ω−1)
2

+ ω

One-dimensional unequally spaced power models

exp() exponential Cii = 1

Cij = φ|xi−xj |, i 6= j

xi are coordinates
|φ| < 1

1 2 1 + ω

gau() gaussian Cii = 1

Cij = φ(xi−xj)2

xi are coordinates

|φ| < 1

1 2 1 + ω

lvr() linear variance Cij = (1− θij)
0 < φ1

1 2 1 + ω

Two-dimensional irregularly spaced power models

iexp() isotropic expo-
nential

Cii = 1

Cij = φ|xi−xj |+|yi−yj |

x and y vectors of coordinates

|φ| < 1

1 2 1 + ω

igau() isotropic gaus-
sian

Cii = 1

Cij = φ(xi−xj)2+(yi−yj)2

x and y vectors of coordinates

|φ| < 1

1 2 1 + ω
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B Available variance models

Details of the available variance models

function
name

description algebraic
form

number of parameters

corr hom het
variance variance

ieuc() isotropic eu-
clidean

Cii = 1

Cij = φ
√

(xi−xj)2+(yi−yj)2

x and y vectors of coordinates

|φ| < 1

1 2 1 + ω

sph() spherical Cij = 1− 3
2
θij + 1

2
θ3ij

0 < φ1

1 2 1 + ω

cir() circular (Web-

ster and Oliver

(2001))

Cij = 1

− 2
π

(θij
√

1− θ2ij + sin−1θij)

0 < φ1

1 2 1 + ω

aexp() anisotropic ex-
ponential

Cii = 1

Cij = φ
|xi−xj |
1 φ

|yi−yj |
2

x and y vectors of coordinates

|φ1 | < 1, |φ2 | < 1

2 3 2+ω

agau() anisotropic
gaussian

Cii = 1

Cij = φ
(xi−xj)2
1 φ

(yi−yj)2
2

x and y vectors of coordinates

|φ1 | < 1, |φ2 | < 1

2 3 2 + ω

mtrn() Matérn with
first 1 ≤ k ≤ 5
parameters
specified by the
user

Cij =Matérn: see Section 4.3.3

φ > 0 range, ν shape(0.5)

δ > 0 anisotropy ratio(1),

α anisotropy angle(0),

λ(1|2) metric(2)

k k+1 k + ω

Heterogeneous variance models

diag() diagonal = idh() Σii = φi Σij = 0, i 6= j - - ω

us() unstructured
general covari-
ance matrix

Σij = φij - - ω(ω+1)
2

ante(,k) antedependence
order k

1 ≤ order ≤
ω − 1

Σ
−1

= UDU ′

Dii = di , Dij = 0, i 6= j

Uii = 1, Uij = uij , 1 ≤ j − i ≤
order

Uij = 0, i > j

- - (k + 1)(ω − k/2)
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B Available variance models

Details of the available variance models

function
name

description algebraic
form

number of parameters

corr hom het
variance variance

chol(,k) cholesky
order k
1 ≤ order ≤
ω − 1

Σ = LDL′

Dii = di , Dij = 0, i 6= j

Lii = 1, Lij = lij , 1 ≤ i−j ≤ order

- - (k + 1)(ω − k/2)

sfa(,k) factor analytic
order k, scaled
form

Σ = DCD,
C = FF

ᵀ
+ E,

F contains correlation factors
E diagonal
DD = diag (Σ)

- - kω + ω

fa(,k) factor analytic
order k, sparse
form

Σ = ΓΓ′ + Ψ,
Γ contains covariance factors
Ψ contains specific variance

- - kω + ω

facv(,k) factor analytic
order k, covari-
ance form

Σ = ΓΓ′ + Ψ,
Γ contains covariance factors
Ψ contains specific variance

- - kω + ω

rr(,k) reduced rank
order k

Σ = ΓΓ′

Γ contains covariance factors
- - kω

Known variance structures

vm() - - -

General variance models

str() variance model relating to a sequence of terms in
the model

- - -

dsum() direct sum structures for the residual error term - - -
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C What’s been replaced in ASReml-R
Version 4

As ASReml-R has developed it has become apparent that some terms can be named more appropri-
ately, the naming of others can be simplified and in some cases the terms can be grouped together.
Table C.1 is a list of terms in Version 3 that have been removed, deprecated or deleted, with their
replacement and action in Version 4. Reasons for the change(s) are also given.

Table C.1: List of terms (arguments, functions, objects, methods) in Version 3 with their status,
action, replacement term and reason for replacement in Version 4

terms in
Release 3

status in
Release 4

action in
Release 4

replacement in
Release 4

reasons for change/notes

asreml() arguments

as.multivariate removed terminates call asmv more succinct argument name
constraints removed terminates call vcc, vcm, E.1 extended functionality
control removed terminates call use

asreml.options, D.5
sensible grouping of job control
and less frequently used options

dump.model removed terminates call obsolete
gammas.table removed terminates call use vparameters.table more appropriate name
ginverse removed terminates call use vm(), E.2 more unified framework for speci-

fication of special variance models
maxiter deprecated honoured maxit can be set in asreml.options

model removed terminates call obsolete
na.method.X removed terminates call use na.action, D.2 more unified framework for re-

lated arguments
na.method.Y removed terminates call use na.action, D.2
rcov removed terminates call residual, D.1.1 more appropriate name
asreml.argument removed terminates call asr argument, D.2 prefix asreml. replaced by

asr to simplify name and avoid
confusion, eg. GLM family func-
tions, argument = gaussian,
Gamma, inverse.gaussian,
binomial, multinomial,
negative.binomial, poisson

predictpoints deleted terminates call design.points, D.2 more appropriate name
pwrpoints deleted terminates call pwr.points, D.2 more appropriate name
splinepoints deleted terminates call knot.points, D.2 more appropriate name
splinescale deleted terminates call spline.scale, D.5 more appropriate name
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C What’s been replaced in ASReml-R Version 4

List of terms (arguments, functions, objects, methods) in Version 3, their status and actions in
Version 4 with their replacement terms and reasons for replacement in Version 4

terms in
Release 3

status in
Release 4

action in
Release 4

replacement in
Release 4

reasons for change/notes

Mixed model func-
tions

at() in rcov or
residual

removed terminates call use dsum, E.2 avoid inconsistent use of at()

giv removed R error will be
generated

use vm(), E.2 more unified framework for speci-
fication of special variance models

ped removed R error will be
generated

use vm(), E.2 more unified framework for speci-
fication of special variance models

The asreml object

family removed reports NULL family sensible inclusion in the model
frame

gammas removed reports NULL vparameters more appropriate name
gammas.type removed reports NULL vparameters.type more appropriate name
gammas.con removed reports NULL vparameters.con more appropriate name
monitor removed reports NULL trace logical companion name to the

tr() method
fixed.formula removed reports NULL use formulae, D.6 a list with components fixed,

random, sparse and residual;
more unified framework for re-
lated components of the asreml

object
random.formula removed reports NULL use formulae, D.6 more unified framework for re-

lated components of the asreml

object
sparse.formula removed reports NULL use formulae, D.6 more unified framework for re-

lated components of the asreml

object

Methods or functions

asreml.Ainverse() removed R error will be
generated

ainverse(), D.5 more appropriate function name

asreml.control() removed R error will be
generated

asreml.options, D.5 now a function that groups job
control and less frequently used
options

asreml.variogram() removed R error will be
generated

use asr varioGram, D.5 renamed to avoid conflict with
similar naming in other R pack-
ages

variogram() removed R error will be
generated

varioGram(), D.5 renamed to avoid conflict with
similar naming in other R pack-
ages

variogram.asreml() removed R error will be
generated

varioGram.asreml(),
D.5

renamed to avoid conflict with
similar naming in other R pack-
ages
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D What’s changed in ASReml-R Version
4

In this chapter we describe changes to the asreml() function with Version 4. To provide the theoret-
ical base and facilitate an understanding of some of the terminology used in describing changed/new
features, we commence with an algebraic outline of the linear mixed models framework.

D.1 Specification of the linear mixed model

If y denotes the vector of observations, the general linear mixed model fitted by ASReml-R can be
written as

y = Xτ +Zu+ e

where τ is a vector of fixed effects, X is the design matrix that associates observations with the
appropriate combination of fixed effects, u is a vector of random effects, Z is the design matrix
that associates observations with the appropriate combination of random effects and e is the vector
of residual errors.

ASReml-R assumes the vectors u and e are uncorrelated with each other and have variance matrices
var (u) = G(σg) and var (e) = Rv(σr) that are functions of variance parameters σg and σr. The
variance matrix for y is then of the form

var (y) = ZG(σg)Z
ᵀ

+Rv(σr)

which we will refer to as the sigma parameterization of the G and R variance structures, and
the individual variance structure parameters in σg and σr will be referred to as sigmas. Other
parameterizations are possible and are sometimes useful. Motivated by mixed models when Rv(σr)
can be written as a scaled correlation matrix Rv(σr) = σ2

eRc(γr), we can then write G(σg) =
σ2eG(γg) and var (y) = σ2e(ZG(γg)Z

ᵀ
+ Rc(γr)). We call this the gamma parameterization and

the individual variance structure parameters in γg and γr will be referred to as gammas. Variance
parameters in σg, for example, σgi are re-parameterized as variance ratios γgi = σgi/σ

2
e. Correlation

parameters are the next most common type of variance parameter in G and Rc and then γgi =
σgi and γri = σri. It is usually easier to suggest initial values of the parameters for the gamma
parameterization, that is, for the gammas, and no initial value for the scaling parameter σ2

e is
needed.
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D.1 Specification of the linear mixed model

D.1.1 rcov becomes residual

Perhaps one of the most notable changes (for existing users) from Version 3 to 4 is the change of
the argument name for specifying the variance structure for the residual error term from rcov to
residual. The default variance structure for data comprising a single section is still id(units).
However, the special function dsum is now used to specify a direct sum structure for data that is
partitioned into sections, for example, in multi-environment trial (MET) analysis, see Section E.2.

D.1.2 Switching between the gamma and sigma parameterization

For single section models when the residual model can be expressed as a scaled residual matrix,
ASReml-R offers the option of fitting parameters using either the sigma parameterization (with
sigma parameters, see Section D.1) or the gamma parameterization (with gamma parameters).
Specifying the residual model as a variance structure (or with dsum for multi-section models, see
end of section) forces ASReml-R to use the sigma parameterization. For example:

residual = ~idv(units)

residual = ~ar1v(Column):ar1(Row)

residual = ~us(Trait):units

would all use the sigma parameterization for model fitting. The following is the likelihood con-
vergence and table of variance parameter estimates for the RCB example when an IDV variance
structure is specified for the residual model:

rcb.asr <- asreml(fixed = yield~1 + Variety, random = ~ idv(Block),

residual = ~idv(units), data = rcb.dat)

Model fitted using the sigma parameterization.

ASReml 4.1.0 Fri Feb 2 09:53:49 2018

LogLik Sigma2 DF wall cpu

1 -28.7733 1.0 96 09:53:49 0.0

2 2.7153 1.0 96 09:53:49 0.0

3 35.8161 1.0 96 09:53:49 0.0

4 55.9947 1.0 96 09:53:49 0.0

5 64.0512 1.0 96 09:53:49 0.0

6 65.0829 1.0 96 09:53:49 0.0

7 65.1126 1.0 96 09:53:49 0.0

8 65.1127 1.0 96 09:53:49 0.0

summary(rcb.asr)$varcomp

component std.error z.ratio bound %ch

Block!Block 0.06715427 0.068195046 0.9847383 P 0

units!R 1.00000000 NA NA F 0

units!units 0.05014295 0.007314089 6.8556664 P 0

Note the overall scale parameter units(R) is fixed at 1.0 and there is an estimated units variance.
For both correlation (gamma parameterization) and variance (sigma parameterization) models for
the residual, ASReml-R automatically includes an overall scale parameter. When a variance model
(with associated variance parameter) is specified, the overall scale parameter is fixed at 1.0 to avoid
overparameterization. This is reflected by the constraint on units(R) in the summary table.

Using gammaPar=TRUE in asreml.options()
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D.1 Specification of the linear mixed model

For single section models where the residual formula specifies a variance model with a single pa-
rameter, the default action to use the sigma parameterization can be switched to the gamma
parameterization by setting asreml.options(gammaPar=TRUE):

asreml.options(gammaPar = TRUE)

rcb.asr <- asreml(fixed = yield~1 + Variety, random = ~ idv(Block),

+ residual = ~idv(units), data = rcb.dat)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Fri Feb 2 09:55:44 2018

LogLik Sigma2 DF wall cpu

1 58.2386 0.0608567 96 09:55:44 0.0

2 60.4027 0.0578118 96 09:55:44 0.0

3 62.6539 0.0546469 96 09:55:44 0.0

4 64.1290 0.0524343 96 09:55:44 0.0

5 64.8815 0.0510398 96 09:55:44 0.0

6 65.0836 0.0504189 96 09:55:44 0.0

7 65.1117 0.0501896 96 09:55:44 0.0

8 65.1127 0.0501448 96 09:55:44 0.0

Note the message to the screen indicating that the gamma parameterization has been used.

The reported variance parameters

By default, the sigma parameterization is used for reporting parameters:

summary(rcb.asr)$varcomp

component std.error z.ratio bound %ch

Block!Block 0.06715656 0.06802034 0.9873012 P 0.2

units(R) 0.05014482 0.00731451 6.8555269 P 0.0

Variance ratios estimated using the gamma parameterization can be reported by setting the param

argument of summary.asreml() to "gamma":

summary(rcb.asr, param = "gamma")$varcomp

gamma component std.error z.ratio bound %ch

Block!Block 1.339252 0.06715656 0.06802034 0.9873012 P 0.2

units(R) 1.000000 0.05014482 0.00731451 6.8555269 P 0.0

It can sometimes be advantageous to switch to the gamma parameterization in terms of providing
more appropriate initial (starting) values as can be seen by comparison of the log-likelihoods in the
first iteration. We can see that for the simple RCB example the REML log-likelihood is the same
for the two fits (sigma then gamma parameterization) and the REML estimates of the two variance
parameters are also identical.

The gamma parameterization by default

To ensure upward compatibility with previous releases, ASReml-R also uses the gamma parameter-
ization for model fitting by default if either no residual formula is specified or the residual formula
specifies a correlation structure. For example:

residual = ~id(units)
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D.2 asreml() arguments

residual = ~ar1(Column):ar1(Row)

residual = ~id(units):cor(trait)

would all use the gamma parameterisation. The following is the likelihood convergence and default
table of variance parameter estimates when an ID variance structure is specified for the residual
model:

rcb.asr <- asreml(fixed = yield~1 + Variety, random = ~ idv(Block),

residual = ~id(units), data = rcb.dat)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Fri Feb 2 09:58:08 2018

LogLik Sigma2 DF wall cpu

1 58.2386 0.0608567 96 09:58:08 0.0

2 60.4027 0.0578118 96 09:58:08 0.0

3 62.6539 0.0546469 96 09:58:08 0.0

4 64.1290 0.0524343 96 09:58:08 0.0

5 64.8815 0.0510398 96 09:58:08 0.0

6 65.0836 0.0504189 96 09:58:08 0.0

7 65.1117 0.0501896 96 09:58:08 0.0

8 65.1127 0.0501448 96 09:58:08 0.0

summary(rcb.asr)$varcomp

component std.error z.ratio bound %ch

Block!Block 0.06715656 0.068019908 0.9873075 P 0.2

units!R 0.05014483 0.007314511 6.8555266 P 0.0

Multi-section models using dsum

In the case of multi-section models where the variance structure for the residual error term is a
direct sum (specified using dsum) the sigma parameterization is used, see Section E.2 for more
detail.

D.2 asreml() arguments

family The family argument can optionally accept a list of family functions for bi-variate GLM
models.

GLM families The GLM family functions (gaussian, binomial, etc) are now prefixed by "asr " in-
stead of the Version 3 style "asreml." prefix. The complete set of families includes gaussian,
Gamma, inverse.gaussian, binomial, multinomial, negative.binomial, poisson. A bi-
variate example is:

binnor.asr <- asreml(cbind(score5, norm) ~ trait:Sex + trait:Grp,

random = ~ us(trait):Sire,

family=list(asr_binomial(),asr_gaussian()),

data=binnor, maxit=20)

A multinomial example is discussed in Section E.1.

knot.points User supplied knot points for spline terms. knot.points in Version 4 replaces
splinepoints in Version 3. For example:
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D.2 asreml() arguments

asreml.options(predictpoints = list(x = seq(118,1582,by=1)))

orange.asr <- asreml(circ $$ x, random = spl(x),

knot.points = list(x = c(118,484,664,1004,1231,1372,1582)), data = orange, subset = Tree==1)

model.frame The model.frame argument optionally accepts a text string naming an RDS file (type
?readRDS in R for information on RDS files) in which to store the asreml model frame (data
+ model attributes) outside the asreml object. The motivation is to reduce the size of the
asreml object in large examples. The data as used in the fit is needed for some post fitting
methods like resid and plot, but automatically including it in the object adds to the size
of the object and the .RData file, particularly if the data alone is hundreds or thousands
of megabytes. The RDS file is a convenient way to keep the data (model) frame and all its
properties outside the .RData workspace. As an example, in

oats.asr <- asreml(yield ~ variety*nitrogen,....,data=oats, model.frame="oats.RDS")

oats.RDS contains the data used in the analysis (i.e. after any model functions etc. have
had their way) as a data.table object with numerous internal attributes. The model.frame

component of oats.asr then just contains the string oats.RDS, which then allows plot() to
find it.

mbf Component name cov replaces dataFrame to identify the covariate dataframe. For example:

naf.asr <- asreml(yield ~ type,

random = ~ mbf(A)+Variety, data=naf,

residual = ~ ar1(column):ar1(row),

mbf = list(A=list(key=c("Variety","V1"),cov="naf31H")))

fits a function associated with factor A defined in dataframe naf31H.

na.action Specifies the action to be taken when missing values are encountered in the response or
explanatory variables. In the call, na.action = na.method(). The arguments to na.method()
are y (the response) = "include", "omit" or "fail" and x (explanatory variables) = "fail",
"include" or "omit". The default action is to include (and estimate) missing values in the
response (y = "include") and to raise an error if there are missing values in the explanatory
variables (x = "fail").

pwr.points User supplied distances for one-dimensional power models (replaces pwrpoints). For
example:

asreml(y ~ 1, random = ~ expv(time) + ..., pwr.points=list(time=c(2,4,7,12))

If not given, expv() gets the points from unique(data[[time]]).

workspace Memory settings (workspace and pworkspace) are now in the options list, but can
also be specified in the asreml() function call. These may be set with text strings specifying
the memory units, for example "3gb" requests 3 gigabytes of space. Valid units are "kb",
"mb" and "gb" which are not case sensitive, for example, "Kb", "kB", "KB" and "kb" refer
identically to kilobytes.
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D.5 Methods and functions

Note that 100e6 in Version 3 is 8*100e6 bytes which is approximately workspace = "800mb"

in Version 4. Note that, no suffix still gives the Version 3 workspace calculation in double
precision words (= 8 bytes).

D.3 The asreml object

Cfixed Returned as a dspMatrix class matrix. A dspMatrix class object is a dense symmetric
matrix provided by the Matrix sparse matrix package in R. Only n(n + 1)/2 elements are
stored but are visible to the user through normal subscripting. The Matrix package is installed
by default in R.

ai Returned as a dspMatrix class matrix. See Cfixed for information on dspMatrix class objects.

D.4 Screen output

ASReml-R no longer prints LogLikelihood Converged and LogLikelihood not converged mes-
sages to the screen at the end of a run. All warnings and failures are reported. A return to the
prompt with no warnings/failures indicates the model has converged.

D.5 Methods and functions

asreml.options() Less frequently used settings are now set per session outside the asreml()

function call in an options environment by a call to asreml.options(). Settings that were
formerly set in asreml.control but are used more often, for example, mbf and group, are
now set in the call to asreml(). With no arguments, asreml.options() returns a list of
settings that can be altered; arguments are a sequence of name=value pairs. The full list
of options is given in the ASReml-R package reference available at http://asreml.org un-
der Resources > ASReml docs and by typing help(asreml) in R. The options that have
changed are as follows:

aipenalty The algorithm for updating loadings in factor analytic models has been improved.
The motivation for change was that the original update procedure sometimes produced unrea-
sonable updates, or otherwise came near to convergence and then drifted away. The present
procedure is to modify the average information matrix by increasing the diagonal elements
pertaining to loadings by a percentage, p. The default is to start with p = 10% and reduce it
by 1 or 2% each iteration down to 1%. If the starting values are poor, 10% may not be a suf-
ficient initial retardation. If it appears the updates are unreasonable, ASReml-R will increase
the value of p by 10% and then continue. The initial value of p is set in the ai.penalty

component of asreml.options() list. After the penalty has reduced to 1%, it is further
reduced to 0.2%. The value can be set to 0 if desired.

asreml.options(ai.penalty = 5) #the default

asreml.options(ai.penalty = 0) #no modification

design The design argument to asreml.options takes values TRUE or FALSE (default). If
TRUE, the design matrix is returned in component design of the asreml object. The design

option might be used, for example, in generating design matrices that can then be used in
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D.5 Methods and functions

post-processing eg. to check design matrices.

font.scale Scales axis text and labels (relative to the ASReml-R default settings) in the
graphs generated by plot.asreml(). The default is font.scale=1.0.

spline.scale Replaces splinescale which was formerly set in asreml.control.

trace If TRUE then a component called trace is added to the returned asreml object con-
taining information regarding the convergence of the current fit.

ainverse() Renamed from asreml.Ainverse(). The returned object is now a three-column ma-
trix of class ginv with attributes rowNames, inBreeding, geneticGroups and logdet (pre-
viously a list of these objects in Version 3).

na.method() See na.action, Section D.2.

plot.asreml() Now uses ggplot2 graphics.

predict.asreml() The following are changes to predict.asreml() with Version 4:

• a new design.points argument, formerly known as predictpoints in asreml.control()

• field name standard.error in the predictions data frame changed to std.error

• covariances and standard errors returned as dspMatrix objects, see Cfixed above for
information on dspMatrix class objects

• predict() just returns the predictions component of the asreml object.

summary.asreml() Variance parameters are reported using the sigma parameterisation by de-
fault. Use param="gamma" to also report gamma parameters. The following are changes to
summary.asreml() with Version 4:

• the nice argument to summary.asreml() has been renamed vparameters and the nice

component of the summary object is now the vparameters component.

• the all argument to summary.asreml() has been renamed coef. Setting coef=TRUE

allows the coefficients for the fixed, random and sparse model terms and their standard
errors to be accessed through the coef.fixed, coef.random and coef.sparse components,
respectively.

• the constraint field in the varcomp component has been renamed bound.

For comparing nested models we recommend the REML likelihood ratio test, see Section 2.4.1
of the ASReml-R Reference Manual Version 4. The Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC) are also defined in Section 2.4.1 of the reference
manual. The AIC and BIC are provided for the convenience of users but without any formal
recommendation for their use. The number of parameters includes the number of linear
parameters estimated and the number of variance structure parameters estimated, excluding
variance parameters fixed at a boundary during the estimation procedure. The value used in
calculating AIC and BIC is reported, giving the opportunity for the user to verify/modify this
number.
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All of these statistics are based on the REML log-likelihood statistics and are only valid if the
fixed effects model is unchanged between runs and is fitted in the same order (ie. the same
effects are aliased in the case where the model is over-parameterized).

variogram() Renamed to varioGram() to avoid conflict with similar naming in other S pack-
ages; method renamed to varioGram.asreml() and the variogram constructor renamed to
asr varioGram().

D.6 Lists

formulae A list with elements the fixed, random, sparse and residual model formulae specified in
the call to asreml().
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E What’s new in ASReml-R Version 4

E.1 asreml() arguments

ai.loadings This option allows further control of the AI updates of loadings in extended factor-
analytic (fa(,k)) models. After ASReml-R calculates updates for variance parameters, it checks
whether the updates are reasonable and sometimes reduces them over and above any step.size
shrinkage. The extra shrinkage has two levels. Loadings that change sign are restricted to
doubling in magnitude, and if the average change in magnitude of loadings is greater than
10-fold, they are all shrunk. Further, when ai.loadings=n is specified (default n = −1 specifies
no action) and the user has not imposed identifiability constraints, then ASReml-R imposes
them using ai.rotate=TRUE and it also prevents AI updates of some loadings during the first
n iterations. For k > 1 factors, only the last factor is estimated (conditional on the earlier
ones) in the first k− 1 iterations. Then pairs, including the last, are estimated until iteration
n.

asr multinomial The multinomial family is new in Version 4 and allows the fitting of multiple
threshold models to polytomous ordinal data with k categories with t = k − 1 thresholds,
assuming a multinomial distribution. Typically, the response variables are a set of k variables
containing counts ri (i = 1 . . . k) in the k categories. The response can either be a matrix
of counts with the response categories as columns, with an additional column for the total
number of cases in each row, or in univariate style with the response as a factor. The total,
n =

∑k
i=1 ri say, can be given using the argument total=n. If the response is a matrix then

the data is grouped and if total=NULL, the total counts are calculated from the category
columns. If the response is a vector then the data are un-grouped and the total is not
relevant. In this case the response must be a factor (this is the only case where ASReml-R
allows a response variable to be a factor) and the response factor must have at least 2 levels.

The model is fitted by transforming the counts to proportions yi = ri/n, (i = 1 . . . k) and
forming cumulative proportions Yi =

∑i
j=1 yj and modelling E(Yi) with µi and νi = h(µi)

with νi the linear predictor for the ith variable and h() the link function. Typically the linear
predictors have two parts, one the same for all the variables associated with one record and a
second being a threshold differing for each variable. These thresholds can be specified using
the trait variable. As an example, the data cheese contains counts on four cheeses in 9
categories. We wish to model the data using a logistic distribution (the default distribution)
with 8 (= 9−1) thresholds to predict the probabilities in each category and to allow different
effects for each cheese.
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A specification of this multinomial model in vectorised form is:

ch4.asr <- asreml(Taste ~ trait + Cheese,

residual = ~ units:mthr(trait),

family=asr_multinomial(),data=cheese.cat)

In grouped form we have:

## total not given

ch1.asr <- asreml(cbind(cat1,cat2,cat3,cat4,cat5,cat6,cat7,cat8,cat9) ~ trait + Cheese,

family=asr_multinomial(),data=cheese)

## total in "tot"

ch2.asr <- asreml(cbind(cat1,cat2,cat3,cat4,cat5,cat6,cat7,cat8,cat9) ~ trait + Cheese,

family=asr_multinomial(total=tot),data=cheese)

combine Form a new factor from an existing factor by merging a subset of its levels, see also gpf()

(E.2). For example, for a factor Site with three levels Site1, Site2 and Site3, the following
code within an asreml() function call would create a new 2 level factor C with level 1 being
sites 1 and 3 and level 2 being site 2:

combine=list(C=Levels(Site, c('1','2','1')))

This subset factor C can be incorporated into model formulae using gpf, eg. gpf(C) or
idv(gpf(C)).

dense ASReml-R uses linked-list matrix methods for the sparse equations, that is, equations for
terms in the random and sparse formulae. However, genetic relationship matrices, for exam-
ple, are typically quite large (order several thousand) and dense, and it can be more efficient
to process such terms as dense. The dense formula component of the asreml.options()

list can be used to include terms in the random formula in the dense set of equations for
processing. The dense formula can also be given directly as an argument to asreml(). For
example:

asreml.options(dense = ~ vm(clonefv,K))

nassau.asr <- asreml(ht6 ~ CultureID/Rep,

random = ~ vm(clonefv,K) + ide(clonefv) + Rep:IncBlock ...)

or equivalently:

nassau.asr <- asreml(ht6 ~ CultureID/Rep,

random = ~ vm(clonefv,K) + ide(clonefv) + Rep:IncBlock,

dense = ~ vm(clonefv,K))

would include the equations for clonefv in the dense set for processing.

family GLM families include the asr multinomial() function.

gammaPar Allows the user to change between the sigma and gamma parameterizations for model
fitting. If gammaPar=FALSE within asreml.options(), the parameterization used depends
on the specification of the model for the residual error term. The sigma parameterization
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is used if the residual model is specified as a variance matrix or with dsum. The gamma
parameterization is used if the residual model is specified as a correlation matrix. There
are sometimes advantages in using a gamma parameterization in terms of providing appro-
priate initial values. If the residual model has only one variance parameter then setting
gammaPar=TRUE within asreml.options() switches from the sigma parameterization to the
gamma parameterization in fitting the mixed model.

rotate.fa Constraints are required in Γ for k > 1 for identifiability in fa(,k) models. These are
automatically set unless the user ensures identifiability by constraining one parameter in the
second column, two in the third column, etc. With rotate.fa=FALSE (the default), ASReml-R
fixes the j = 1, ..., i−1 loadings for the i-th factor (2 ≤ i ≤ k) to zero and their corresponding
boundary constraints to F. The total number of constraints is k(k − 1)/2.

An alternative set of constraints can be set if identifiability constraints have not been imposed,
using rotate.fa=TRUE. The factors are rotated to orthogonality, in each iteration, and k(k −
1)/2 constraints are imposed on the loadings depending on the values in this orthogonalized
Γ. This option is hypothesized to have better convergence properties but we do not have
sufficient evidence yet to make a definite recommendation on its use. We note that extra
constraints might be needed to ensure identifiability if the number of parameters in a k factor
analytic model, ω(1 + k)− k(k− 1)/2, is greater than the ω(ω+ 1)/2 parameters that can be
estimated in Σ.

prune Form a new factor from an existing factor by selecting a subset of its levels, see also sbs()

(E.2). For example, for the same factor as in combine, the following code within an asreml()

function call would instruct ASReml-R to form factors A and B with only those levels in the
specified subset of Site:

prune=list(A=Subset(Site, c(2,3)), B=Subset(Site,c("Site1","Site3")))

This example demonstrates the two ways of specifying the required levels of site, ie. by level
number for factor A and by the site name for factor B. The factors A and B can be used in
the model term using sbs, for example, sbs(A) to fit a fixed effect or idv(sbs(B)) to fit a
variance component.

vcc Is the command that allows users the functionality of the constraints argument in Version
3.

Equality and multiplicative relationships among variance parameters are defined by supplying
a two-column numeric matrix with a dimnames attribute to vcc. The first column defines
the grouping of variance parameters by assigning the same number to each parameter within
a group, and the second column contains the scaling coefficients. The dimnames()[[1]] at-
tribute must match the component names in the asreml parameter vector (see start.values).
The parameters in a group are scaled relative to the first parameter in that group so that the
scaling of the first parameter in each group is one.

For example, consider a MET with two trials with separate error variances (σ21 and σ22) and the
spatial row (ρr1 and ρr2) and column (ρc1 and ρc2) parameters for a separable autoregressive
spatial model of order 1 for each trial. Say we wish to constrain these error models to be
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equal so that σ21 = σ22, ρr1 = ρr2 and ρc1 = ρc2 . Then the appropriate vcc matrix with row
attributes is

Trial 1!R

Trial 1!Row!cor

Trial 1!Column!cor

Trial 2!R

Trial 2!Row!cor

Trial 2!Column!cor



1 1
2 1
3 1
1 1
2 1
3 1



Alternatively, if we require σ22 = 2σ21, the vcc matrix is

Trial 1!R

Trial 1!Row!cor

Trial 1!Column!cor

Trial 2!R

Trial 2!Row!cor

Trial 2!Column!cor



1 1
2 1
3 1
1 2
2 1
3 1



vcm Allows the user to define equality and multiplicative relationships among variance parameters.
The default NULL means no relationship is fitted.

The vcm argument to asreml() allows the user to define equality and multiplicative relation-
ships among variance parameters. The default NULL means no relationship is fitted.

The user may wish to define relationships between particular variance parameters. For ex-
ample, consider an experiment in which two or more separate trials are sown adjacent to one
another at the same trial site, with trials sharing a common plot boundary. In this case it
might be sensible to fit the same spatial parameters and error variances for each trial. In
other situations it can be sensible to define the same variance structure over several model
terms. ASReml-R Version 3 catered for equality and multiplicative relationships among vari-
ance parameters (this facility is available in Version 4 through vcc, see above). In ASReml-R
Version 4 linear relationships among variance structure parameters can be defined through a
simple linear model and by supplying a design matrix for a set of parameters.

Let κ be the r-vector of original variance parameters (for either the sigma or gamma param-
eterisation) from which we wish to specify linear relationships of the form

κ = Mκn

where κn is the c-vector of parameters in the new set. In the simple case where the r
parameters are constrained to be equal, c = 1, the r original parameters are all equal to the
one new parameter and M will contain a column of ones. Consider again the MET with two
trials in which we wish to constrain the trial error variances and the spatial row and column
parameters for a separable autoregressive spatial model of order 1 for each trial, to be equal.
In this case the relationship between the original and new parameter sets is κ = Mκn where
κ is the 6 × 1 vector [σ2

1
, ρr1 , ρc1 , σ

2
2
, ρr2 , ρc2 ]ᵀ, κn is a 3 × 1 vector [σ2e , ρr, ρc]

ᵀ and M ,
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with row attributes, is the 6× 3 matrix

Trial 1!R

Trial 1!Row!cor

Trial 1!Column!cor

Trial 2!R

Trial 2!Row!cor

Trial 2!Column!cor



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1



Generating M

A default data frame vparameters.table is generated by setting the start.values argument to
TRUE in the call to asreml(). This data frame contains elements Component which contains
the names of the variance parameters, Value which contains the default initial values and
Constraint which contains the default constraint code. The Component element can be used
to generate M .

By way of example, consider a model containing a first order interaction term (A : B, say)
where the outer factor (A) is of order 7 and we wish to model it with an unstructured variance
matrix with some parameters constrained. If the constraints are
vr,c = v3,c (r = 4, 5, 6, 7; c = 1, 2), vr,r = v3,3 (r = 4, 5, 6, 7) and vr,c = v4,3 = 0 (r =
5, 6, 7; c = 3, 4, 5, 6; r > c), this gives rise to a vector of 7 parameters
κn = (v1,1, v2,1, v2,2, v3,1, v3,2, v3,3, v4,2)

ᵀ and a variance matrix:

v1,1
v2,1 v2,2
v3,1 v3,2 v3,3
v3,1 v3,2 v4,3 v3,3
v3,1 v3,2 v4,3 v4,3 v3,3
v3,1 v3,2 v4,3 v4,3 v4,3 v3,3
v3,1 v3,2 v4,3 v4,3 v4,3 v4,3 v3,3

That is, there are only 7 distinct parameters from the original 28 and one of these is to be
fixed at zero. Furthermore, suppose that none of the remaining variance parameters from
other terms in the model are to be subject to any constraints.

The following call

> model.gam <- asreml(..., random = us(A):id(B), start.values = T, ...)

generates a data frame component of model.gam named vparameters.table, as described above.

If the 28 components of interest are the 47th to the 74th, the following code subsets
model.gam$vparameters.table and creates a factor in the reduced table that can be used to
construct M :

gam <- model.gam$vparameters.table[47:74,]

gam$fac <- factor(c(
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1,

2,3,

4,5,6,

4,5,7,6,

4,5,7,7,6,

4,5,7,7,7,6,

4,5,7,7,7,7,6))

M <- model.matrix(~-1 + fac, data=gam)

dimnames(M)[[1]] <- row.names(model.gam$vparameters.table)[47:74]

attr(M,'assign') <- NULL; attr(M,'contrasts') <- NULL

ImportantM must have a dimnames attribute with the names of the original set of parameters
as its row names.

In this example, M would look like

parameter attribute κn 1 2 3 4 5 6 7

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

A:B!B 1!1

A:B!B 2!1

A:B!B 2!2

A:B!B 3!1

A:B!B 3!2

A:B!B 3!3

A:B!B 4!1

A:B!B 4!2

A:B!B 4!3

A:B!B 4!4

A:B!B 5!1

A:B!B 5!2

A:B!B 5!3

A:B!B 5!4

A:B!B 5!5

A:B!B 6!1

A:B!B 6!2

A:B!B 6!3

A:B!B 6!4

A:B!B 6!5

A:B!B 6!6

A:B!B 7!1

A:B!B 7!2

A:B!B 7!3

A:B!B 7!4

A:B!B 7!5

A:B!B 7!6

A:B!B 7!7

v1,1
v2,1
v2,2
v3,1
v3,2
v3,3
v4,3



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0



The final step before fitting the model is to fix the parameters corresponding to level 7 of
fac to zero. This is achieved by by setting the appropriate values in the Value field of gam
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to zero and the corresponding boundary constraint codes in the Constraint field to F. During
the estimation procedure the new parameters, κn, use the numbering system of the original
parameters, κ, hence the 7 κn parameters are numbered from 47-53. So to fix v4,3, parameter
53 is fixed. The modified values and the matrix M are used through the G.param and vcm()
arguments to asreml(), that is

model.asr <- asreml(..., random = us(A):id(B), vcm(M), G.param = gam, ...)

This example has been set up to show how vcm() can be used. An equivalent method in this
case would be to fix the 10 parameters vr,c (r = 4, 5, 6, 7; c = 3, 4, 5, 6; numbers 55, 59, 60, 64,
65, 66, 70, 71, 72, 73) and set up a 15×3 matrix based on parameters vr,c (r = 3, 4, 5, 6, 7; c =
1, 2; numbers 50, 51, 53, 54, 57, 58, 62, 63, 68, 69) and vr,r (r = 3, 4, 5, 6, 7; numbers 52, 56,
61, 67, 74) in terms of v3,1, v3,2 and v3,3.

E.2 Mixed model functions

C() Factor contrasts. In the following L is a contrast based on the 4 levels of a factor nitrogen:

L <- c(3,1,-1,-3)

The contrast would be defined by the term C(nitrogen, L) in the model call.

The length of the contrast vector (pre-defined as L in this case although c(3,1,-1,-3) could
replace L in the call) must be equal to the number of levels in the factor. Missing values in
the factor are excluded in forming the contrast.

dsum() Direct sum structures for the residual error term

The data observations are often partitioned into sections to which separate variance structures
are applied. For example, separate spatial structures and residual error variances would
typically be specified for each site in a multi-environment trial (MET) analysis.

It is conventional to use a variable in the data file to identify sections within the data. The
data will be sorted internally by ASReml-R (ie. the data file does not need to be ordered in
any particular way) and the variance structures for sections can then be specified using the
dsum function, for example:

residual = ~dsum(~id(units) | section)

for a simple analysis in which section is a column in the data file that codes the individual
sections. The dsum function (shorthand for direct sum) is new with Version 4 and performs
several different tasks:

– it tells ASReml-R that the variance structure for the residual error term is a direct sum
structure where different variance structures apply to the different levels of the sectioning
variable in the data.
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If a model structure specified defines a residual matrix then a variance factor associated
with the appropriate sectioning level is added to the specified model to generate a variance
matrix.

– it prunes the levels for a section so that only the levels of factors defining the residual
variance structure for that section are used in forming that variance structure.

Variance model functions in dsum

Correlation models were used in direct sum structures for the residual error term in Version
3 which automatically added and estimated a scale parameter for each section. In Version
4 a variance model function can be specified for one argument of the dsum component for
each section. In this case the section variance is automatically fixed at 1.0 to avoid over-
parameterization. For each section, ASReml-R counts the number of dimensions (1 for a
single term, ≥ 2 for separable structures) for which variance models are specified and if the
count is > 1 the model is judged to be over-parameterized and an error is returned.

Specifying the model using dsum

Often sections relate to sites (or trials or experiments) in the case where several related trials
are analysed together. For example, consider a MET dataset comprising data for three sites,
each laid out in a row by column array coded by factors Row and Column in the dataset. To
model the residuals at each site by a separate scaled AR1×AR1 variance structure, we could
write:

residual = ~dsum(~ar1(Column):ar1(Row) | Site)

Alternatively, a scaled AR1×AR1 variance structure for sites 1 and 3, but a scaled ID×AR1
structure for site 2, could be coded as:

residual = ~dsum(~ar1(Column):ar1(Row) + id(Column):ar1(Row) | Site,

levels = list(c(1,3), c(2)))

or as

residual = ~dsum(~ar1(Column):ar1(Row) + id(Column):ar1(Row) | Site,

levels = list(c("Site1", "Site3"), c("Site2")))

where Site1, Site2 and Site3 are the three site labels. An alternative is to provide separate
dsum statements for the AR1×AR1 and ID×AR1 sections:

residual = ~dsum(~ar1(Column):ar1(Row) | Site, levels=c(1,3))

+ dsum(~id(Column):ar1(Row) | Site, levels=c(2))

Making use of variance model functions in dsum, other variants on this code are:

residual = ~dsum(~ar1v(Column):ar1(Row) + idv(Column):ar1(Row) | Site,

levels = list(c(1,3), c(2)))
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and

residual = ~dsum(~ar1(Column):ar1v(Row) + id(Column):ar1(Row) | Site,

levels = list(c(1,3), c(2)))

For the former, the error variance would be fixed at 1.0 for all three sites to avoid overpa-
rameterization. For the latter, the error variances for sites 1 and 3 but not 2 would be fixed
at 1.0. An error would be returned for

residual = ~dsum(~ar1v(Column):ar1v(Row) + id(Column):ar1v(Row) | Site,

levels = list(c(1,3), c(2)))

Error: Residual model overparameterized - structure has 2 variance models

For each of these definitions, ASReml-R will determine the particular levels in Row and Column

for each site and hence the appropriate sizes of the AR1 and ID matrices, and variances
associated with the levels of Site will be added to correlation structures.

Important A correlation/variance structure needs to be specified for every level of the sec-
tioning factor, in which case

residual = ~dsum(~ar1(Column):ar1(Row) | Site, levels=c(1,3))

would fail as there is no variance structure specified for site 2.

Specifying variance structures using dimensions

Although less conventional, variance structures can also be specified using dimensions rather
than factor names. For example, consider a simple MET comprising three trials arranged in
rectangular arrays of dimension 12, 10 and 9 rows by 6, 8 and 18 ranges for trials 1, 2 and 3,
respectively. For data ordered rows within columns within trials (trials coded as Site in the
data frame), an AR1×AR1 variance structure for trials 1 and 3 and an IDV×AR1 structure
for trial 2, could be coded as:

residual = ~dsum(~ar1(6):ar1(12)| Site, levels=c(1)) + dsum(~ar1(8):ar1(10)| Site, levels=c(2))

+ dsum(~ar1(18):ar1(9)| Site, levels=c(3))

The outer argument to dsum

The outer argument to dsum has been introduced to enable modelling multiple independent
sections of correlated observations with a common variance structure and common parameters
within sections. The sections can be of different sizes. For example:

residual=~ dsum(~id(Range):ar1(Row)| Site,levels=c(1:2,7)) +

dsum(~id(Range):ar1(Row)| Site,levels=3:4, outer=T) +

dsum(~id(Range):ar1(Row)| Site,levels=5:6, outer=T),

would model separate error variance and spatial correlation parameters for levels 1, 2 and 7
of Site and the same error variance and spatial correlation parameters for levels 3 and 4 of
the factor Site and likewise for levels 5 and 6 of Site.
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Two rules for defining the residual error term

The following two rules are not new to ASReml-R with Version 4 but are included here as a
reminder:

Rule 1 The number of effects in the residual term must be equal to the number of data units
included in the analysis.

Rule 2 Where a separable variance structure is specified for the residual error term, each
combination of levels of the single model terms specifying this structure must uniquely identify
one unit of the data. For example, in the spatial analysis of a trial comprising 4 replicates
of 24 varieties arranged as a rectangular array of dimension 4 rows by 24 columns (rows are
replicates), a, AR1 × AR1 variance structure for the residuals can be specified by the model
term ar1(column):ar1(row), where column and row are the appropriate columns in the data
file. However, the number of data units must be the product of the number of levels for row

and the number of levels for column; 96 in this case. If this is not the case, or if more than
one unit is associated with some row column combination, ASReml-R will return an error
message and it will not be possible to use ar1(column):ar1(row) for residual error. If there
are fewer than 96 units and each row-column combination present is associated with one unit,
then the data would need to be augmented by completing (padding out) the full rectangular
array allow an appropriate analysis.

These rules will always be satisfied for a single section of data defined either by default (ie.
with no residual variance structure specified) or in terms of the units factor. However, a
mismatch in both size and ordering is possible when either multiple sections are present (as
in MET analysis) or when non-identity variance model functions are used.

facv() an alternative form of the factor analytic model fa(). If the size of the matrix modelled is
much larger than the number of factors, the sparse or extended formulation fa() is usually
computationally preferable.

gpf() Used in conjunction with combine (see Section E.1) to form a new factor from an existing
factor by grouping together levels, for example:

met.gpf <- asreml(yield ~ Site,

random= ~ Genotype + Genotype:Site + gpf(C):Row,

residual = ~ idv(units), data = met,

combine=list(C=Levels(Site, c('1','2','1'))))

lvr() a linear variance model.

leg() Legendre polynomials. Search for legendre in the ASReml-R forum (http://www.vsni.
co.uk/forum/) for a discussion of legendre polynomials.

own() User defined variance models.

The own() variance model allows the specification of a user-defined variance structure. This
feature requires a user provided R function (the default is myowngdg()) that returns a list
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containing the variance matrix and a full set of partial derivative matrices, one for each
parameter. Before each iteration, ASReml-R calls myowngdg() passing basic information on
the variance parameters given by the own() model term, and retrieves the returned list
containing the variance matrix and its derivatives.

We use the data set shf (an agricultural field experiment arranged in a rectangular grid of
plots) to illustrate the use of own(). my.ar1() is an example myowngdg function; it duplicates
the AR1 variance structure.

Ignoring the design factors, the following simple analysis models the residuals with separable
autoregressive processes in the Row and Column dimensions:

library(asreml)

shf.ar1 <- asreml(yield ~ Variety,

residual = ~ ar1(Row):ar1(Column), data=shf)

The following call (not run yet) replaces the intrinsic ASReml-R variance model ar1() with
the user-defined function my.ar1() for the Column factor:

shf.ar1 <- asreml(yield ~ Variety,

residual = ~ ar1(Row):own(Column, "my.ar1", 0.1, "R"), data=shf)

where the arguments to own() are:

Column The object in the data.
"my.ar1" The name of the user defined function as a character string.
0.1 A vector of initial parameter values.
"R" A character vector specifying the parameter type(s),

in this case "R" designates the single parameter as a correlation.

rr() A reduced rank variant of the factor analytic variance model function fa().

sbs() Used in conjunction with prune to form a new factor from an existing factor by selecting a
subset of its levels, see example for prune.

sfa() a scaled version of the factor analytic model fa().

vm() Known variance models. These may be genetic relationship matrices or their inverses if they
exist. If an inverse, it must have an INVERSE attribute set to TRUE. For example, the inverse
relationship matrix harvey.ai would need to have an inverse attribute set manually:

attr(harvey.ai, "INVERSE"=TRUE)

unless it was constructed from a pedigree file using ainverse() in which case an "INVERSE"=TRUE

attribute would be automatically set:

harvey.ai <- ainverse(harvey.ped)

The vm() function includes known singular cases. For example:
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# Pedigree file example

# A data set originally distributed by Walt Harvey

# Calf Sire Dam Line AgeOfDam Y1 Y2 Y3

# 101 Sire_1 0 1 3 192 390 224

# 102 Sire_1 0 1 3 154 403 265

# 103 Sire_1 0 1 4 185 432 241

# 104 Sire_1 0 1 4 183 457 225

harvey.ped <- read.table("harvey.ped", header=TRUE, as.is=TRUE)

harvey <- asr.read.table("harvey.dat", header=TRUE)

harvey.ai <- ainverse(harvey.ped)

adg0.asr <- asreml(y3 ~1, random = ~vm(Calf,harvey.ai),data=harvey)

E.3 Methods and functions

meff() Link a relationship matrix to the regressor variables.

One use of a relationship matrix is to allow more computationally efficient fitting of random
regression models associating a vector u of p factor effects with a vector v of m regression
effects through the model u = Mv, where the p×m matrix M contains m regressor variables
for each of the p levels of the factor. If m� p, it is more computationally efficient to fit the
model with Zu and a variance structure for u based on K = MM ′, where Z is the design
matrix linking observations to factor levels, than a model fitting the regressor effects directly.
A common case of such a situation is in genomic studies when u represents genotype effects
and M is the p×m matrix of genetic marker scores.

The matrixK is constructed externally to the asreml() function call and used in the analysis
with the vm() model function. K must have a dimnames attribute giving the levels of the
model term defined in vm(). The marker (or regressor) effects can be obtained from the
meff.asreml() method. For example:

K <- M%*%t(M)

nassau.asr <- asreml(ht6 ~ CultureID/Rep,

random = ~ vm(clonefv,K) + ide(clonefv) +

Rep:IncBlock, ...)

nassau.mef <- meff(nassau.asr, mef=list(K="M"), effects = ~vm(clonefv, K))

fits such a model and estimates the marker effects given that the matrix K is in the R object
K and the original p×m matrix of marker scores is in the R object M. The reason for quoting
the name ”M” is so that when R is passing the arguments through to the meff function it will
not evaluate the object (which is typically large), as this will cause issues with memory and
speed.

The meff() method is not to be confused with the mef argument to asreml() that accepts
the return value of the meff method.

lrt() Calculates the likelihood ratio test for fitted models.

vpc.char() Returns a vector of variance parameter constraint codes (P, U, F, B, ...) corresponding
to the numeric values returned in the vparameters.com component of the asreml object, see
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example under vpredict().

vpredict() Compute functions of variance components and their approximate standard errors.

Functions of variance components and their standard errors can be obtained from the vpredict()
function. As the variance parameter names can sometimes be long or unwieldy, the variance
parameters are represented in vpredict() by the strings "V1", "V2",. . . in the order in
which they appear in the vparameters component of the asreml object. For example:

coop <- asreml.read.table("coop.dat", header=TRUE)

head(coop)

ywt0.sv <- asreml(cbind(ywt,fat) ~ trait + trait:age + trait:con(Brr) + trait:Sex + trait:Sex:age,

random = ~us(trait):id(Sire), sparse = ~trait:Grp,

residual = ~id(units):us(trait), data=coop, start.values=TRUE)

ywt0.sv <- ywt0.sv$vparameters.table

ywt0.sv[,'Value'] <- c(1.4, 0.13, 0.03, 1, 23, 2.5, 1.6)

ywt0.sv

ywt.asr <- asreml(cbind(ywt,fat) ~ trait + trait:age + trait:con(Brr) + trait:Sex + trait:Sex:age,

random = ~us(trait):id(Sire), sparse = ~trait:Grp,

residual = ~id(units):us(trait), data=coop, G.param=ywt0.sv, R.param=ywt0.sv)

ywt.asr$vparameters

#trait:Sire!trait_ywt:ywt trait:Sire!trait_fat:ywt trait:Sire!trait_fat:fat

#1.45821148 0.13027963 0.03443794

#units:trait(R) units:trait!trait_ywt:ywt units:trait!trait_fat:ywt

#1.00000000 23.20554057 2.50401740

#units:trait!trait_fat:fat

#1.66291555

#the variance parameter single character constraint codes

vpc.char(ywt.asr)

#trait:Sire!trait_ywt:ywt trait:Sire!trait_fat:ywt trait:Sire!trait_fat:fat

# "U" "U" "U"

# units:trait(R) units:trait!trait_ywt:ywt units:trait!trait_fat:ywt

# "F" "U" "U"

#units:trait!trait_fat:fat

# "U"

ywt.vp <- cbind.data.frame(names(ywt.asr$vparameters),vpc.char(ywt.asr),

1:length(ywt.asr$vparameters.type))

names(ywt.vp) <- c("names", "constraint", "number");ywt.vp

ywt.vp

#names constraint number

#trait:Sire!trait_ywt:ywt trait:Sire!trait_ywt:ywt U 1

#trait:Sire!trait_fat:ywt trait:Sire!trait_fat:ywt U 2

#trait:Sire!trait_fat:fat trait:Sire!trait_fat:fat U 3

#units:trait(R) units:trait(R) F 4

#units:trait!trait_ywt:ywt units:trait!trait_ywt:ywt U 5

#units:trait!trait_fat:ywt units:trait!trait_fat:ywt U 6

#units:trait!trait_fat:fat units:trait!trait_fat:fat U 7

# heritA 4*V1 / (V1 + V5)

vpredict(ywt.asr, hA ~4*V1 / (V1 + V5))

#Estimate SE

#hA 0.2364947 0.06117935
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# heritB 4*V3 / (V3 + V7)

vpredict(ywt.asr, heritB ~4*V3 / (V3 + V7))

#Estimate SE

#heritB 0.08115678 0.03936332

# genetic corr

vpredict(ywt.asr, gc ~V2 / sqrt((V1 * V3)))

#Estimate SE

#gc 0.5813634 0.2038863

# phenotypic corr

vpredict(ywt.asr, pc ~(V2 + V6) / sqrt(((V1+V5) * (V3+V7))))

#Estimate SE

#pc 0.4071449 0.01832069
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